云南省昆明黄冈实验学校2026届数学高一上期末统考试题含解析_第1页
云南省昆明黄冈实验学校2026届数学高一上期末统考试题含解析_第2页
云南省昆明黄冈实验学校2026届数学高一上期末统考试题含解析_第3页
云南省昆明黄冈实验学校2026届数学高一上期末统考试题含解析_第4页
云南省昆明黄冈实验学校2026届数学高一上期末统考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省昆明黄冈实验学校2026届数学高一上期末统考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列说法中正确的是()A.如果一条直线与一个平面平行,那么这条直线与平面内的任意一条直线平行B.平面内的三个顶点到平面的距离相等,则与平行C.,,则D.,,,则2.某校早上6:30开始跑操,假设该校学生小张与小王在早上6:00~6:30之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张与小王至少相差5分钟到校的概率为()A. B.C. D.3.设,,,则的大小关系为A. B.C. D.4.下列函数中,是偶函数且值域为的是()A. B.C. D.5.把的图象上各点的横标缩短为原来的(纵坐标不变),再把所得图象向右平移个单位长度,得到的图象,则()A. B.C. D.6.若,则终边在()A.第一、三象限 B.第一、二象限C.第二、四象限 D.第三、四象限7.若函数的零点所在的区间为,则实数a的取值范围是()A. B.C. D.8.在如图的正方体中,M、N分别为棱BC和棱的中点,则异面直线AC和MN所成的角为()A. B.C. D.9.已知向量,,若与共线,则等于()A. B.C. D.10.设集合,.若,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的图象必过定点___________12.已知,,则____________13.已知函数f(x)=x2,若存在t∈R,对任意x∈[1,m](m>1,m∈N),都有f(x+t)≤2x,则m的最大值为______14.已知集合A={0,1,2,3,4,5},集合B={1,3,5,7,9},则Venn图中阴影部分表示的集合中元素的个数为________15.若幂函数是偶函数,则___________.16.关于函数与有下面三个结论:①函数的图像可由函数的图像平移得到②函数与函数在上均单调递减③若直线与这两个函数的图像分别交于不同的A,B两点,则其中全部正确结论的序号为____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的部分图象如图所示.(1)求函数的解析式,并求它的对称中心的坐标;(2)将函数的图象向右平移个单位,得到的函数为偶函数,求函数,的最值及相应的值.18.(1)写出下列两组诱导公式:①关于与的诱导公式;②关于与的诱导公式.(2)从上述①②两组诱导公式中任选一组,用任意角的三角函数定义给出证明.19.对于函数,若在其定义域内存在实数,,使得成立,则称是“跃点”函数,并称是函数的1个“跃点”(1)求证:函数在上是“1跃点”函数;(2)若函数在上存在2个“1跃点”,求实数的取值范围;(3)是否同时存在实数和正整数使得函数在上有2022个“跃点”?若存在,请求出和满足的条件;若不存在,请说明理由20.定义在R上的函数对任意的都有,且,当时.(1)求的值,并证明是R上的增函数;(2)设,(i)判断的单调性(不需要证明)(ii)解关于x的不等式.21.已知实数,定义域为的函数是偶函数,其中为自然对数的底数(Ⅰ)求实数值;(Ⅱ)判断该函数在上的单调性并用定义证明;(Ⅲ)是否存在实数,使得对任意的,不等式恒成立.若存在,求出实数的取值范围;若不存在,请说明理由

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据线面关系,逐一判断每个选项即可.【详解】解:对于A选项,如果一条直线与一个平面平行,那么这条直线与平面内无数条直线平行,而不是任意的直线平行,故错误;对于B选项,如图,,,,分别为正方体中所在棱的中点,平面设为平面,易知正方体的三个顶点,,到平面的距离相等,但所在平面与相交,故错误;对于选项C,可能在平面内,故错误;对于选项D,正确.故选:D.2、A【解析】设小张与小王的到校时间分别为6:00后第分钟,第分钟,由题意可画出图形,利用几何概型中面积比即可求解.【详解】设小张与小王的到校时间分别为6:00后第分钟,第分钟,可以看成平面中的点试验的全部结果所构成的区域为是一个正方形区域,对应的面积,则小张与小王至少相差5分钟到校事件(如阴影部分)则符合题意的区域,由几何概型可知小张与小王至少相差5分钟到校的概率为.故选:A【点睛】本题考查了几何概率模型,解题的关键是画出满足条件的区域,属于基础题.3、B【解析】利用指数函数与对数函数的单调性判断出的取值范围,从而可得结果.【详解】,,,,故选B.【点睛】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于难题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.4、D【解析】分别判断每个选项函数的奇偶性和值域即可.【详解】对A,,即值域为,故A错误;对B,的定义域为,定义域不关于原点对称,不是偶函数,故B错误;对C,的定义域为,定义域不关于原点对称,不是偶函数,故C错误;对D,的定义域为,,故是偶函数,且,即值域为,故D正确.故选:D.5、C【解析】根据三角函数的周期变换和平移变换的原理即可得解.【详解】解:把的图象上各点的横标缩短为原来的(纵坐标不变),可得的函数图像,再把所得图象向右平移个单位长度,可得函数,所以.故选:C.6、A【解析】分和讨论可得角的终边所在的象限.【详解】解:因为,所以当时,,其终边在第三象限;当时,,其终边在第一象限.综上,的终边在第一、三象限.故选:A.7、C【解析】由函数的性质可得在上是增函数,再由函数零点存在定理列不等式组,即可求解得a的取值范围.【详解】易知函数在上单调递增,且函数零点所在的区间为,所以,解得故选:C8、C【解析】根据异面直线所成角的定义,找到与直线平行并且和相交的直线,即可找到异面直线所成的角,解三角形可求得结果.【详解】连接如下图所示,分别是棱和棱的中点,,正方体中可知,是异面直线所成的角,为等边三角形,.故选:C.【点睛】此题是个基础题,考查异面直线所成的角,以及解决异面直线所成的角的方法(平移法)的应用,体现了转化的思想和数形结合的思想.9、A【解析】先求出,,再根据向量共线求解即可.【详解】由题得,因为与共线,.故选:A.【点睛】本题主要考查平面向量的坐标运算和向量共线的坐标表示,意在考查学生对这些知识的理解掌握水平,属于基础题.10、C【解析】∵集合,,∴是方程的解,即∴∴,故选C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】f(x)=k(x-1)-ax-1,x=1时,y=f(x)=-1,∴图象必过定点(1,-1).12、【解析】,,考点:三角恒等变换13、5【解析】设g(x)=f(x+t)-2x=x2+(2t-2)x+t2≤0.从而得到g(1)≤0且g(m)≤0,求得t的范围,讨论t的最值,代入m的不等式求得m的范围,结合条件可得m的最大值【详解】函数f(x)=x2,那么f(x+t)=x2+2tx+t2,对任意实数x∈[l,m],都有f(x+t)≤2x成立,即有x2+(2t-2)x+t2≤0令g(x)=x2+(2t-2)x+t2,从而得到g(1)≤0,且g(m)≤0,由g(1)≤0可得,由g(m)≤0,即m2+(2t-2)m+t2≤0当时,;当时,综上可得,由m为正整数,可得m的最大值为5故答案为5【点睛】本题考查不等式恒成立问题解法,注意运用二次函数的性质,考查运算求解能力,是中档题14、3【解析】由集合定义,及交集补集定义即可求得.【详解】由Venn图及集合的运算可知,阴影部分表示的集合为∁又A={0,1,2,3,4,5},B={1,3,5,7,9},∴A∩B={1,3,5},∴即Venn图中阴影部分表示的集合中元素的个数为3故答案为:3.15、【解析】根据幂函数的定义得,解得或,再结合偶函数性质得.【详解】解:因为函数是幂函数,所以,解得或,当时,,为奇函数,不满足,舍;当时,,为偶函数,满足条件.所以.故答案为:16、①②##②①【解析】根据三角函数的平移法则和单调性知①②正确,取代入计算得到③错误,得到答案.【详解】向左平移个单位得到,①正确;函数在上单调递减,函数在上单调递减,②正确;取,则,,,③错误.故答案为:①②三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),对称中心坐标为;(2),此时;,此时.【解析】⑴由图象求得振幅,周期,利用周期公式可求,将点代入解得,求得函数解析式,又,解得的值,可得函数的对称中心的坐标;⑵由题意求出及函数的解析式,又因为,同时结合三角函数的图象进行分析,即可求得最值及相应的值解析:(1)根据图象知,,∴,∴,将点代入,解得,∴,又∵,解得,∴的对称中心坐标为.(2),∵为偶函数,∴,∴,又∵,∴,∴,∴.∵,∴,∴,∴,此时;,此时.点睛:本题考查了依据三角函数图像求得三角函数解析式,计算其对称中心,在计算三角函数值域或者最值时的方法是由内到外,分布求得其范围,最终算得结果,注意这部分的计算,是经常考的内容18、(1)详见解析(2)详见解析【解析】(1)按要求写出对应公式即可.(2)利用任意角定义以及对称性即可证明对应公式.【详解】(1)①,,.②,,.(2)①证明:设任意角的终边与单位圆的交点坐标为.由于角的终边与角的终边关于轴对称,因此角的终边与单位圆的交点与点关于轴对称,所以点的坐标是.由任意角的三角函数定义得,,,;,,.所以,,.②证明:设任意角的终边与单位圆的交点坐标为.由于角的终边与角的终边关于轴对称,因此角的终边与单位圆的交点与点关于轴对称,所以点的坐标是.由任意角的三角函数定义得,,,;,,.所以,,.【点睛】主要考查对诱导公式的掌握以及推导过程,熟练运用任意角三角函数的定义,属于基础题.19、(1)证明见详解(2)(3)存在,或或【解析】(1)将要证明问题转化为方程在上有解,构造函数转化为函数零点问题,结合零点存在性定理可证;(2)原问题等价于方程在由两个根,然后构造二次函数,转化为零点分布问题可解;(3)将问题转化为方程在上有2022个实数根,再转化为两个函数交点个数问题,然后可解.【小问1详解】因为整理得,令,因为,所以在区间有零点,即存在,使得,即存在,使得,所以,函数在上是“1跃点”函数【小问2详解】函数在上存在2个“1跃点”方程在上有两个实数根,即在上有两个实数根,令,则解得或,所以的取值范围是【小问3详解】由,得,即因为函数在上有2022个“跃点”,所以方程在上有2022个解,即函数与的图象有2022个交点.所以或或即或或20、(1),证明见解析(2)(i)在上是单减单减函数(ii)【解析】(1)令可得,再可得答案,设,则,所以可证明单调性;(2)(i)根据复合函数的单调性法则可得答案;(ii)由题意可得,,结合函数的单调性可得的解为,则原不等式等价于,从而可得答案.【小问1详解】在中,令可得,则令可得,可得任取且,则,所以则即,所以是R上的增函数【小问2详解】(i)由在上是单减单减函数,又单调递增由复合函数的单调性规律可得在上是单减单减函数.(ii)由,所以的解为从而不等式的解为,即即,整理可得即,解得或,所以或所以原不等式的解集为21、(Ⅰ)1;(Ⅱ)在上递增,证明详见解析;(Ⅲ)不存在.【解析】(Ⅰ)根据函数是偶函数,得到恒成立,即恒成立,进而得到,即可求出结果;(Ⅱ)任取,且,根据题意,作差得到,进而可得出函数单调性;(Ⅲ)由(Ⅱ)知函数在上递增,由函数是偶函数,所以函数在上递减,再由题意,不等式恒成立可化为恒成立,即对任意的恒成

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论