版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第第页第02讲平面向量基本定理及坐标表示【题型归纳目录】题型一:平面向量基本定理的理解题型二:用基底表示向量题型三:平面向量的坐标表示题型四:平面向量加、减运算的坐标表示题型五:平面向量数乘运算的坐标表示题型六:向量共线的判定题型七:利用向量共线的坐标表示求参数题型八:定比分点坐标公式及应用题型九:数量积的坐标运算题型十:平面向量的模题型十一:平面向量的夹角、垂直问题题型十二:平面向量数量积的综合应用【知识点梳理】知识点一:平面向量基本定理1、平面向量基本定理如果是同一平面内两个不共线的向量,那么对于这个平面内任一向量,有且只有一对实数,使,称为的线性组合.①其中叫做表示这一平面内所有向量的基底;②平面内任一向量都可以沿两个不共线向量的方向分解为两个向量的和,并且这种分解是唯一的.这说明如果且,那么.③当基底是两个互相垂直的单位向量时,就建立了平面直角坐标系,因此平面向量基本定理实际上是平面向量坐标表示的基础.知识点诠释:平面向量基本定理的作用:平面向量基本定理是建立向量坐标的基础,它保证了向量与坐标是一一对应的,在应用时,构成两个基底的向量是不共线向量.2、如何使用平面向量基本定理平面向量基本定理反映了平面内任意一个向量可以写成任意两个不共线的向量的线性组合.(1)由平面向量基本定理可知,任一平面直线形图形,都可以表示成某些向量的线性组合,这样在解答几何问题时,就可以先把已知和结论表示为向量的形式,然后通过向量的运算,达到解题的目的.(2)在解具体问题时,要适当地选取基底,使其他向量能够用基底来表示.选择了不共线的两个向量、,平面上的任何一个向量都可以用、唯一表示为=+,这样几何问题就转化为代数问题,转化为只含有、的代数运算.知识点二:平面向量的坐标表示1、正交分解把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.知识点诠释:如果基底的两个基向量、互相垂直,则称这个基底为正交基底,在正交基底下分解向量,叫做正交分解,事实上,正交分解是平面向量基本定理的特殊形式.2、平面向量的坐标表示如图,在平面直角坐标系内,分别取与轴、轴方向相同的两个单位向量、作为基底,对于平面上的一个向量,由平面向量基本定理可知,有且只有一对实数,使得=.这样,平面内的任一向量都可由唯一确定,我们把有序数对叫做向量的(直角)坐标,记作=,x叫做在轴上的坐标,叫做在轴上的坐标.把叫做向量的坐标表示.给出了平面向量的直角坐标表示,在平面直角坐标系内,每一个平面向量都可以用一有序数对唯一表示,从而建立了向量与实数的联系,为向量运算数量化、代数化奠定了基础,沟通了数与形的联系.知识点诠释:(1)由向量的坐标定义知,两向量相等的充要条件是它们的坐标相等,即且,其中,.(2)要把点的坐标与向量坐标区别开来.相等的向量的坐标是相同的,但始点、终点的坐标可以不同.比如,若,,则;若,,则,,显然A、B、C、D四点坐标各不相同.(3)在直角坐标系中有双重意义,它既可以表示一个固定的点,又可以表示一个向量.知识点三:平面向量的坐标运算1、平面向量坐标的加法、减法和数乘运算运算坐标语言加法与减法记,,实数与向量的乘积记,则2、如何进行平面向量的坐标运算在进行平面向量的坐标运算时,应先将平面向量用坐标的形式表示出来,再根据向量的直角坐标运算法则进行计算.在求一个向量时,可以首先求出这个向量的起点坐标和终点坐标,再运用终点坐标减去起点坐标得到该向量的坐标.求一个点的坐标,可以转化为求该点相对于坐标原点的位置向量的坐标.但同时注意以下几个问题:(1)点的坐标和向量的坐标是有区别的,平面向量的坐标与该向量的起点、终点坐标有关,只有起点在原点时,平面向量的坐标与终点的坐标才相等.(2)进行平面向量坐标运算时,先要分清向量坐标与向量起点、终点的关系.(3)要注意用坐标求向量的模与用两点间距离公式求有向线段的长度是一样的.(4)要清楚向量的坐标与表示该向量的有向线段的起点、终点的具体位置无关,只与其相对位置有关.知识点四:平面向量平行(共线)的坐标表示1、平面向量平行(共线)的坐标表示设非零向量,则,即,或.知识点诠释:若,则不能表示成因为分母有可能为0.2、三点共线的判断方法判断三点是否共线,先求每两点对应的向量,然后再按两向量共线进行判定,即已知,,若则A,B,C三点共线.知识点五:向量数量积的坐标表示1、已知两个非零向量,,2、设,则或3、如果表示向量的有向线段的起点和终点的坐标分别为、,那么(平面内两点间的距离公式).知识点六:向量在几何中的应用(1)证明线段平行问题,包括相似问题,常用向量平行(共线)的充要条件(2)证明垂直问题,常用垂直的充要条件(3)求夹角问题,利用(4)求线段的长度,可以利用或题型一:平面向量基本定理的理解【例题1-1】如果是平面内一组不共线的向量,那么下列四组向量中,不能作为平面内所有向量的一组基底的是(
)A.与B.与C.与D.与【变式1-1】若向量与是平面上的两个不平行向量,下列向量不能作为一组基的是(
)A.与B.与C.与D.与【变式1-2】如果表示平面内所有向量的一个基底,那么下列四组向量,不能作为一个基底的是(
)A.B.C.D.题型二:用基底表示向量【例题2-1】如图,在中,,则(
)A.B.C.D.【变式2-1】如图,中,,,,,,则(
)A.B.C.D.【变式2-2】如图所示,是△ABC的一条中线,点满足,过点的直线分别与射线,射线交于,两点.(1)若,求的值;(2)设,,,,求的值;题型三:平面向量的坐标表示【例题3-1】如果用,分别表示x轴和y轴正方向上的单位向量,且,则可以表示为(
)A.B.C.D.【变式3-1】已知点,,则(
)A.B.C.D.【变式3-2】已知,,点P是线段MN上的点,且,则P点的坐标为(
)A.B.C.D.题型四:平面向量加、减运算的坐标表示【例题4-1】(1)已知向量,,,求;(2)化简:.【变式4-1】已知向量在正方形网格中的位置如图所示,用基底表示,则(
)A.B.C.D.题型五:平面向量数乘运算的坐标表示【例题5-1】已知向量,,.(1)求;(2)求满足的实数,;【变式5-1】已知A(-2,4),B(3,-1),C(-3,-4).设.(1)求;(2)求满足的实数m,n的值.题型六:向量共线的判定【例题6-1】下列各组的两个向量,共线的是(
)A.,B.,C.,D.,【变式6-1】已知向量,,那么与共线的一个向量是(
)A.(6,4)B.(4,6)C.(0,4)D.(1,6)【变式6-2】如图,在中,是的中点,是线段上靠近点的三等分点,设,.(1)用向量与表示向量,;(2)若,求证:三点共线.题型七:利用向量共线的坐标表示求参数【例题7-1】已知向量,且,则_____.【变式7-1】已知,,向量,,则当时,的最小值为_____.【变式7-2】已知向量.(1)求;(2)求满足的实数和的值;(3)若,求实数k的值.题型八:定比分点坐标公式及应用【例题8-1】已知,,点P是线段MN的一个三等分点且靠近点M,则点P的坐标为______.【变式8-1】已知在平面直角坐标系中,点,当P是线段靠近的一个四等分点时,点P的坐标为__________.【变式8-2】已知三点、、在一条直线上,点,,且,则点的坐标为______.题型九:数量积的坐标运算【例题9-1】已知向量,,,若,则______.【变式9-1】如图,四边形是边长为4的正方形,若,且为的中点,则______.【变式9-2】若向量与向量的夹角为钝角,则实数的取值范围是_______.【变式9-3】已知向量,则在方向上的投影向量是_____.题型十:平面向量的模【例题10-1】已知,,则______.【变式10-1】已知向量.(1)当时,求;(2)当最小时,求的值.【变式10-2】已知平面向量,,,若,则______.题型十一:平面向量的夹角、垂直问题【方法技巧与总结】解决向量夹角问题的方法及注意事项(1)求解方法:由直接求出.(2)注意事项:利用三角函数值求的值时,应注意角的取值范围是.利用判断的值时,要注意时,有两种情况:一是是钝角,二是为;时,也有两种情况:一是是锐角,二是为.【例题11-1】已知向量,.(1)当时,求;(2)当,,求向量与的夹角.【变式11-1】已知向量,.(1)求;(2)已知,且,求向量与向量的夹角.【变式11-2】已知平面向量,满足,,其中.(1)若,求实数m的值.(2)若,若与夹角的余弦值.题型十二:平面向量数量积的综合应用【例题12-1】已知是腰长为1的等腰直角三角形,角为直角,点为平面上的一点,则的最小值为_________.【变式12-1】如图,已知正方形ABCD的边长为2,点E为AB的中点.以A为圆心,AE为半径,作圆弧交AD于点F,若P为劣弧EF上的动点,则的最小值为__________.课后巩固练习1.在中,点D在BC边上,且.设,,则可用基底,表示为(
)A.B.C.D.2.在矩形中,,,若点、分别是,的中点,则(
)A.B.C.D.3.已知向量,满足,,且,则向量,夹角的余弦值为(
)A.B.C.D.4.已知向量,,若与的夹角是锐角,则实数的取值范围为(
)A.B.C.D.5.若点是所在平面上一点,且是直线上一点,,则的最小值是(
).A.2B.1C.D.6.已知平面向量,为单位向量,且,则向量在向量上的投影向量的坐标为______.7.在中,点D在边BC上,且,若,则___________.8.已知平面向量,,.(1)若,求x的值;(2)若(为负实数),求x,的值.9.(1)已知向量的夹角为60°,,求.(2)设与是两个不共线向量,,若A,B,D三点共线,求k的值.平面向量基本定理及坐标表示随堂检测1.若,,则等于(
)A.B.C.D.2.已知,,若与共线,则(
)A.B.4C.9D.3.已知向量,,若,则(
)A.-1B.6C.-6D.24.已知,,点在线段的延长线上,且,则的坐标是(
)A.B.C.D.5.已知,,且与平行,则等于(
)A.B.C.D.6.已知向量,,且
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 煤矿监控作业题目及答案
- 医疗器械类考试试题及答案
- 2025年建筑特殊工种建筑电工模拟考试题库试卷及答案
- 2025年项目管理流程概念知识考察试题及答案解析
- 2026年建筑医院古彭大合同
- 2025年电子商务常识普及试题及答案解析
- 2025年国家工作人员学法用法考试题库及答案
- 2025年职业道德与职业指导考试题库附答案
- 2025年氯化工艺作业人员理论考试练习题及答案
- 妇产科火灾应急预案演练脚本
- 2025年大学《智慧建筑与建造-智慧建造机器人技术》考试备考试题及答案解析
- 2025年及未来5年中国客户端游戏未来趋势预测分析及投资规划研究建议报告
- 报批报建流程及注意事项
- 2025河北省金融租赁有限公司校园招聘笔试历年难易错考点试卷带答案解析试卷2套
- 短视频创意策划方案
- 2025 年大学动物医学(动物寄生虫)下学期期末测试卷
- 2025年教师招聘考试(行政职业能力测验)历年参考题库含答案详解
- 2026年山东化工职业学院单招职业技能考试题库附答案
- 蓄力扬帆 增长可期-中国企业在拉美投资调研
- 员工离职流程及薪资结算标准
- 中国儿童食物过敏循证指南解读 4
评论
0/150
提交评论