版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省凌源市第二高级中学2025年数学高一上期末学业水平测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数是奇函数,则的值为()A.1 B.C.0 D.2.已知函数,则()A.0 B.1C.2 D.103.设,则的值为()A.0 B.1C.2 D.34.已知函数,函数,若有两个零点,则m的取值范围是()A. B.C. D.5.如果AB>0,BC>0,那么直线Ax-By-C=0不经过的象限是A.第一象限 B.第二象限C.第三象限 D.第四象限6.=A.- B.C.- D.7.如图,一个直三棱柱形容器中盛有水,且侧棱.若侧面水平放置时,液面恰好过的中点,当底面ABC水平放置时,液面高为()A.6 B.7C.2 D.48.设函数,则的值为()A. B.C. D.189.英国物理学家和数学家牛顿提出了物体在常温环境下温度变化的冷却模型,设物体的初始温度为,环境温度为,其中,经过后物体温度满足(其中k为正常数,与物体和空气的接触状况有关).现有一个的物体,放在的空气中冷却,后物体的温度是,则()(参考数据:)A.1.17 B.0.85C.0.65 D.0.2310.已知幂函数的图象过点,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知且,则=______________12.函数的单调递减区间为___________.13.已知扇形OAB的面积为,半径为3,则圆心角为_____14.函数在上是x的减函数,则实数a的取值范围是______15.《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=(弦矢+).弧田(如图),由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为,弦长等于9m的弧田.按照上述经验公式计算所得弧田的面积是________.16.设函数,则____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,、、在同一个平面直角坐标系中的坐标分别为、、(1)若,求角的值;(2)当时,求的值18.已知集合,集合(1)当时,求和(2)若,求实数m的取值范围19.已知,求值;已知,求的值20.已知函数,.(1)求函数的最小正周期以及单调递增区间;(2)求函数在区间上的最小值及相应的的值.21.已知函数(1)求的值;(2)若对任意的,都有求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据奇函数的定义可得,代入表达式利用对数的运算即可求解.【详解】函数是奇函数,则,即,从而可得,解得.当时,,即定义域为,所以时,是奇函数故选:D【点睛】本题考查了函数奇偶性的应用,需掌握函数奇偶性的定义,同时本题也考查了对数的运算,属于基础题.2、B【解析】根据分段函数的解析式直接计算即可.【详解】.故选:B.3、C【解析】根据分段函数,结合指数,对数运算计算即可得答案.【详解】解:由于,所以.故选:C.【点睛】本题考查对数运算,指数运算,分段函数求函数值,考查运算能力,是基础题.4、A【解析】存在两个零点,等价于与的图像有两个交点,数形结合求解.【详解】存在两个零点,等价于与的图像有两个交点,在同一直角坐标系中绘制两个函数的图像:由图可知,当直线在处的函数值小于等于1,即可保证图像有两个交点,故:,解得:故选:A.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图像,利用数形结合的方法求解.5、B【解析】斜率为,截距,故不过第二象限.考点:直线方程.6、A【解析】.考点:诱导公式7、A【解析】根据题意,当侧面AA1B1B水平放置时,水的形状为四棱柱形,由已知条件求出水的体积;当底面ABC水平放置时,水的形状为三棱柱形,设水面高为h,故水的体积可以用三角形的面积直接表示出,计算即可得答案【详解】根据题意,当侧面AA1B1B水平放置时,水的形状为四棱柱形,底面是梯形,设△ABC的面积为S,则S梯形=S,水的体积V水=S×AA1=6S,当底面ABC水平放置时,水的形状为三棱柱形,设水面高为h,则有V水=Sh=6S,故h=6故选A【点睛】本题考点是棱柱的体积计算,考查用体积公式来求高,考查转化思想以及计算能力,属于基础题8、B【解析】根据分段函数的不同定义域对应的函数解析式,进行代入计算即可.【详解】,故选:B9、D【解析】根据所给公式,将所给条件中的温度相应代入,利用对数的运算求解即可.【详解】根据题意:的物体,放在的空气中冷却,后物体的温度是,有:,所以,故,即,故选:D.10、D【解析】先利用待定系数法求出幂函数的解析式,再求的值【详解】解:设,则,得,所以,所以,故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】先换元求得函数,然后然后代入即可求解.【详解】且,令,则,即,解得,故答案为:3.12、【解析】利用对数型复合函数性质求解即可.【详解】由题知:,解得或.令,则为减函数.所以,为减函数,为增函数,,为增函数,为减函数.所以函数的单调递减区间为.故答案为:13、【解析】直接利用扇形的面积公式得到答案.【详解】故答案为:【点睛】本题考查了扇形面积的计算,属于简单题.14、【解析】首先保证真数位置在上恒成立,得到的范围要求,再分和进行讨论,由复合函数的单调性,得到关于的不等式,得到答案.【详解】函数,所以真数位置上的在上恒成立,由一次函数保号性可知,,当时,外层函数为减函数,要使为减函数,则为增函数,所以,即,所以,当时,外层函数为增函数,要使为减函数,则为减函数,所以,即,所以,综上可得的范围为.故答案为.【点睛】本题考查由复合函数的单调性,求参数的范围,属于中档题.15、.【解析】如下图所示,在中,求出半径,即可求出结论.【详解】设弧田的圆心为,弦为,为中点,连交弧为,则,所以矢长为,在中,,,所以,,所以弧田的面积为.故答案为:.【点睛】本题以数学文化为背景,考查直角三角形的边角关系,认真审题是解题的关键,属于基础题.16、2【解析】利用分段函数由里及外逐步求解函数的值即可.【详解】解:由已知,所以,故答案为:.【点睛】本题考查分段函数的应用,函数值的求法,考查计算能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)-【解析】⑴首先可以通过、、写出和,然后通过化简可得,最后通过即可得出角的值;⑵首先可通过化简得到,再通过化简得到,最后对化简即可得到的值【详解】⑴已知、、,所以,,因为,所以化简得,即,因为,所以;⑵由可得,化简得,,所以,所以,综上所述,【点睛】本题考查了三角函数以及向量的相关性质,主要考查了三角恒等变换的相关性质以及向量的运算的相关性质,考查了计算能力,考查了化归与转化思想,锻炼了学生对于公式的使用,是难题18、(1)(或者);(或者)(2)【解析】(1)代入,结合集合的并、补运算即得解;(2)分,两种情况讨论,列出不等关系,计算即得解【小问1详解】当时,所以(或者);(或者)【小问2详解】当时,则,解得当时,则,解得,所以m不存在综上所述,19、(1)(2)【解析】(1)由三角函数中平方关系求得,再由诱导公式可商数关系化简求值;(2)考虑到已知角与待求角互余,可直接利用诱导公式求值【详解】解:已知,所以:,所以:,,,由于,所以:【点睛】本题考查同角间的三角函数关系与诱导公式,解题时需考虑已知角与未知角之间的关系,以寻求运用恰当的公式进行化简变形与求值20、(1);;(2);.【解析】(1)利用余弦函数的周期公式计算可得最小正周期,借助余弦函数单调增区间列出不等式求解作答.(2)求出函数的相位范围,再利用余弦函数性质求出最小值作答.【小问1详解】函数中,由得的最小正周期,由,解得,即函数在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 初中化学家庭实验课程对学生科学精神培养的研究教学研究课题报告
- 2025年湖北省妇幼保健院信息部工作人员招聘备考题库完整参考答案详解
- 福建省闽西南水资源开发有限责任公司2025年招聘备考题库附答案详解
- 复旦大学附属华东医院2026年招聘备考题库含答案详解
- 2025年吴川市公开招聘大学生乡村医生28人备考题库及完整答案详解1套
- 2型糖尿病患者远期预后队列研究策略
- 现代实景高级渔村建设工作报告模板
- 麻章区2025年大学生乡村医生专项计划招聘备考题库参考答案详解
- 2025年贵州省西能煤炭勘查开发有限公司招聘17人备考题库及1套参考答案详解
- 2025年上海市浦东新区东方芦潮港幼儿园招聘备考题库(区内流动)有答案详解
- 陕西省咸阳市2024-2025学年高一上学期期末教学质量检测数学试卷(含解析)
- 盐城市2025年滨海县事业单位公开招聘人员66人笔试历年参考题库典型考点附带答案详解(3卷合一)
- 2025江苏盐城东台市消防救援综合保障中心招聘16人笔试考试参考题库及答案解析
- 2025年广东省第一次普通高中学业水平合格性考试(春季高考)数学试题(含答案详解)
- 2026年企业内容运营方案设计与品牌价值传播指南
- 广州市南沙区南沙街道社区专职招聘考试真题2024
- 孤独症谱系障碍的神经发育轨迹研究
- GB 46768-2025有限空间作业安全技术规范
- T/CECS 10214-2022钢面镁质复合风管
- DL∕T 5776-2018 水平定向钻敷设电力管线技术规定
- 核对稿600单元概述校核
评论
0/150
提交评论