版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省金华市磐安县第二中学2025-2026学年高一上数学期末经典试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.为了得到函数的图像,只需将函数的图像上所有的点()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度2.已知sin(α-π)+cos(π-α)A.-2 B.2C.-3 D.33.集合,,则()A. B.C. D.4.设是定义在R上的奇函数,当时,(b为常数),则的值为()A.﹣6 B.﹣4C.4 D.65.函数,则函数()A.在上是增函数 B.在上是减函数C.在是增函数 D.在是减函数6.酒驾是严重危害交通安全的违法行为.根据国家有关规定:驾驶人血液中的酒精含量大于(或等于)毫克/毫升,小于毫克/毫升的情况下驾驶机动车属于饮酒驾车;含量大于(或等于)毫克/毫升的情况下驾驶机动车属于醉酒驾车.假设某驾驶员一天晚上点钟喝了一定量的酒后,其血液中酒精含量上升到毫克/毫升.如果在停止喝酒后,他血液中酒精含量以每小时的速度减少,则他次日上午最早()点(结果取整数)开车才不构成酒驾.(参考数据:,)A. B.C. D.7.已知偶函数的定义域为且,,则函数的零点个数为()A. B.C. D.8.在平面直角坐标系中,直线的斜率是()A. B.C. D.9.已知函数则函数的零点个数为.A. B.C. D.10.已知扇形的圆心角为2弧度,其所对的弦长为2,则扇形的弧长等于A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最小值为________12.函数的单调递增区间为__________13.在中,已知是上的点,且,设,,则=________.(用,表示)14.若不等式在上恒成立,则实数a的取值范围为____.15.一条光线从A处射到点B(0,1)后被轴反射,则反射光线所在直线的一般式方程为_____________.16.函数的定义域是___________,若在定义域上是单调递增函数,则实数的取值范围是___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,且,求的值18.某企业为抓住环境治理带来的历史性机遇,决定开发生产一款大型净水设备.生产这款设备的年固定成本为万元,每生产台需要另投入成本(万元),当年产量不足台时,万元,当年产量不少于台时,万元.若每台设备的售价为万元,经过市场分析,该企业生产的净水设备能全部售完(1)求年利润(万元)关于年产量(台)的函数关系式;(2)年产量为多少台时,该企业在这一款净水设备的生产中获利最大?最大利润是多少万元?19.国家质量监督检验检疫局于2004年5月31日发布了新的《车辆驾驶人员血液、呼气酒精含量阀值与检验》国家标准.新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫升为饮酒驾车,血液中的酒精含量大于或等于80毫克/百毫升为醉酒驾车.经过反复试验,喝一瓶啤酒后酒精在人体血液中的变化规律的“散点图”如下:该函数模型如下:根据上述条件,回答以下问题:(1)试计算喝1瓶啤酒多少小时血液中的酒精含量达到最大值?最大值是多少?(2)试计算喝一瓶啤酒多少小时后才可以驾车?(时间以整小时计算)(参考数据:)20.如图,弹簧挂着的小球做上下振动,它在(单位:)时相对于平衡位置(静止时的位置)的高度(单位:)由关系式确定,其中,,.在一次振动中,小球从最高点运动至最低点所用时间为.且最高点与最低点间的距离为(1)求小球相对平衡位置的高度(单位:)和时间(单位:)之间的函数关系;(2)小球在内经过最高点的次数恰为50次,求的取值范围21.已知函数.(1)若函数在单调递增,求实数的取值范围;(2),,使在区间上值域为.求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】利用诱导公式,的图象变换规律,得出结论【详解】解:为了得到函数的图象,只需将函数图象上所有的点向右平移个单位长度,故选:B2、B【解析】应用诱导公式及正余弦的齐次式,将题设等式转化为-tanα-1【详解】sin(α-π)+∴-tanα-1=-3tan故选:B.3、B【解析】解不等式可求得集合,由交集定义可得结果.【详解】,,.故选:B.4、B【解析】根据函数是奇函数,可得,求得,结合函数的解析式即可得出答案.【详解】解:因为是定义在R上的奇函数,当时,,,解得所以.故选:B.5、C【解析】根据基本函数单调性直接求解.【详解】因为,所以函数在是增函数,故选:C6、D【解析】根据题意可得不等式,解不等式可求得,由此可得结论.【详解】假设经过小时后,驾驶员开车才不构成酒驾,则,即,,则,,次日上午最早点,该驾驶员开车才不构成酒驾.故选:D.7、D【解析】令得,作出和在上的函数图象如图所示,由图像可知和在上有个交点,∴在上有个零点,∵,均是偶函数,∴在定义域上共有个零点,故选点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等8、A【解析】将直线转化成斜截式方程,即得得出斜率.【详解】解:由题得,原式可化为,斜率.故选:A.9、B【解析】令,得,令,由,得或,作出函数的图象,结合函数的图象,即可求解【详解】由题意,令,得,令,由,得或,作出函数的图象,如图所示,结合函数的图象可知,有个解,有个解,故的零点个数为,故选B.【点睛】本题主要考查了函数的零点问题,其中令,由,得到或,作出函数的图象,结合函数的图象求解是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于基础题10、A【解析】根据题意画出图形,结合图形求出半径r,再计算弧长【详解】如图所示,,,过点O作,C垂足,延长OC交于D,则,;中,,从而弧长为,故选A【点睛】本题考查了弧长公式的应用问题,求出扇形的半径是解题的关键,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、##【解析】用辅助角公式将函数整理成的形式,即可求出最小值【详解】,,所以最小值为故答案为:12、【解析】由可得,或,令,因为在上递减,函数在定义域内递减,根据复合函数的单调性可得函数的单调递增区间为,故答案为.13、+##【解析】根据平面向量的线性运算可得答案.【详解】因为,所以,所以可解得故答案为:14、【解析】把不等式变形为,分和情况讨论,数形结合求出答案.【详解】解:变形为:,即在上恒成立令,若,此时在上单调递减,,而当时,,显然不合题意;当时,画出两个函数的图象,要想满足在上恒成立,只需,即,解得:综上:实数a的取值范围是.故答案为:15、【解析】根据反射光线的性质,确定反射光线上的两个点的坐标,最后确定直线的一般式方程.【详解】因为一条光线从A处射到点B(0,1)后被轴反射,所以点A关于直线对称点为,根据对称性可知,反射光线所在直线过点,又因为反射光线所在直线又过点,所以反射光线所在直线斜率为,所以反射光线所在直线方程为,化成一般式得:,故答案为:.16、①.##②.【解析】根据对数函数的定义域求出x的取值范围即可;结合对数复合型函数的单调性与一次函数的单调性即可得出结果.【详解】由题意知,,得,即函数的定义域为;又函数在定义域上单调增函数,而函数在上单调递减,所以函数为减函数,故.故答案为:;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】利用同角三角函数的基本关系可求得的值,再结合诱导公式可求得所求代数式的值.【详解】∵,∴,∵,∴所以,∴【点睛】关键点睛:解决三角函数中的给值求值的问题时,关键在于找出待求的角与已知的角之间的关系.18、(1);(2)当年产量为台时,该企业在这款净水设备的生产中获利润最大,最大为万元【解析】(1)分别在和两种情况下,由可得函数关系式;(2)利用二次函数性质、基本不等式可分别求得和时的最大值,比较即可得到结果.【小问1详解】当,时,;当,时,;综上所述:.【小问2详解】当,时,,则当时,的最大值为;当,时,(当且仅当,即时等号成立);当年产量为台时,该企业在这款净水设备的生产中获利润最大,最大为万元19、(1)喝1瓶啤酒后1.5小时血液中的酒精含量达到最大值53毫克/百毫升;(2)喝1瓶啤酒后需6小时后才可以驾车.【解析】(1)由图可知,当函数取得最大值时,,此时,当,即时,函数取得最大值为.故喝1瓶啤酒后1.5小时血液中的酒精含量达到最大值53毫克/百毫升.(2)由题意知,当车辆驾驶人员血液中的酒精小于20毫克/百毫升时可以驾车,此时.由,得:,两边取自然对数得:即,∴,故喝1瓶啤酒后需6小时后才可以驾车.20、(1),;(2)【解析】(1)首先根据题意得到,,从而得到,(2)根据题意,当时,小球第一次到达最高点,从而得到,再根据周期为,即可得到.【详解】(1)因为小球振动过程中最高点与最低点的距离为,所以因为在一次振动中,小球从最高点运动至最低点所用时间为,所以周期为2,即,所以所以,(2)由题意,当时,小球第一次到达最高点,以后每隔一个周期都出现一次最高点,因为小球在内经过最高点的次数恰为50次,所以因为,所以,所以的取值范围为(注:的取值范围不考虑开闭)21、(1);(2).【解析】(1)由对数复合函数的单调性得,即可求参数范围.(2)首先判断的单调性并确定在上的值域,结合已知易得在内有两不等实根,,应用换元法进一步转化为两个函数有两个交点求参数范围.【小问1详解】∵
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年成都工贸职业技术学院单招综合素质考试备考题库带答案解析
- 2026年湖北科技学院继续教育学院高职单招职业适应性考试备考题库有答案解析
- 2026年昌吉职业技术学院高职单招职业适应性测试备考试题带答案解析
- 2026年毕节职业技术学院高职单招职业适应性测试备考题库有答案解析
- 2026年湖南理工职业技术学院单招职业技能考试参考题库带答案解析
- 2026年湖南石油化工职业技术学院单招综合素质考试备考试题带答案解析
- 2026年福州黎明职业技术学院单招职业技能考试参考题库带答案解析
- 2026年广州工程技术职业学院高职单招职业适应性测试备考试题有答案解析
- 2026年东营科技职业学院高职单招职业适应性考试备考试题带答案解析
- 2026年河北东方学院单招综合素质笔试参考题库带答案解析
- 假体隆胸护理查房
- 财险保险述职报告
- 五斗橱的制造 五斗橱的制作
- 公司境外股权投资管理办法
- 建筑施工预算评审报告
- 国际汉语教师求职简历
- 个人营业执照注销委托书范文
- 产品外协加工作业流程
- 工程力学试题和答案解析汇总
- GB/T 4677-2002印制板测试方法
- GB/T 12464-2016普通木箱
评论
0/150
提交评论