版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省瓦房店市第三高级中学2025年高二上数学期末考试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.等差数列的前项和,若,则A.8 B.10C.12 D.142.直线与圆的位置关系是()A.相切 B.相交C.相离 D.不确定3.已知直线,若直线与垂直,则的倾斜角为()A. B.C. D.4.已知为定义在R上的偶函数函数,且在单调递减.若关于的不等式在上恒成立,则实数m的取值范围是()A. B.C. D.5.曲线:在点处的切线方程为A. B.C. D.6.如图,P是椭圆第一象限上一点,A,B,C是椭圆与坐标轴的交点,O为坐标原点,过A作AN平行于直线BP交y轴于N,直线CP交x轴于M,直线BP交x轴于E.现有下列三个式子:①;②;③.其中为定值的所有编号是()A.①③ B.②③C.①② D.①②③7.彬塔,又称开元寺塔、彬县塔,民间称“雷峰塔”,位于陕西省彬县城内西南紫薇山下.某同学为测量彬塔高度,选取了与塔底在同一水平面内的两个测量基点与,现测得,,,在点测得塔顶的仰角为60°,则塔高()A.30m B.C. D.8.太极图被称为“中华第一图”,闪烁着中华文明进程的光辉,它是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种相互转化,相对统一的和谐美.定义:能够将圆O的周长和面积同时等分成两个部分的函数称为圆O的一个“太极函数”,设圆O:,则下列说法中正确的是()①函数是圆O的一个太极函数②圆O的所有非常数函数的太极函数都不能为偶函数③函数是圆O的一个太极函数④函数的图象关于原点对称是为圆O的太极函数的充要条件A.①② B.①③C.②③ D.③④9.已知数列是等差数列,下面的数列中必为等差数列的个数为()①②③A.0 B.1C.2 D.310.已知椭圆:与双曲线:有相同的焦点、,椭圆的离心率为,双曲线的离心率为,点P为椭圆与双曲线的交点,且,则的最大值为()A. B.C. D.11.已知点,,直线:与线段相交,则实数的取值范围是()A.或 B.或C. D.12.已知双曲线的两个焦点,,是双曲线上一点,且,,则双曲线的标准方程是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,四边形和均为正方形,它们所在的平面互相垂直,动点在线段上,、分别为、的中点.设异面直线与所成的角为,则的最大值为____14.甲、乙两人下棋,甲获胜的概率为,乙获胜的概率为,则甲、乙两人下成和棋的概率为___________.15.已知曲线表示焦点在轴上的双曲线,则符合条件的的一个整数值为______.16.数学中,多数方程不存在求根公式.因此求精确根非常困难,甚至不可能.从而寻找方程的近似根就显得特别重要.例如牛顿迭代法就是求方程近似根的重要方法之一,其原理如下:假设是方程的根,选取作为的初始近似值,在点处作曲线的切线,则与轴交点的横坐标称为的一次近似值,在点处作曲线的切线.则与轴交点的横坐标称为的二次近似值.重复上述过程,用逐步逼近.若给定方程,取,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,记f(x)的导数为f′(x).若曲线f(x)在点(1,f(1))处的切线斜率为﹣3,且x=2时y=f(x)有极值,(Ⅰ)求函数f(x)的解析式;(Ⅱ)求函数f(x)在[﹣1,1]上的最大值和最小值18.(12分)已知两定点,,动点与两定点的斜率之积为(1)求动点M的轨迹方程;(2)设(1)中所求曲线为C,若斜率为的直线l过点,且与C交于P,Q两点.问:在x轴上是否存在一点T,使得对任意且,都有(其中,分别表示,的面积).若存在,请求出点T的坐标;若不存在,请说明理由19.(12分)以直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,已知直线的极坐标方程为,曲线的参数方程是(为参数(1)求直线和曲线的普通方程;(2)直线与轴交于点,与曲线交于,两点,求20.(12分)在平面直角坐标系xOy中,椭圆C:(a>b>0)的左、右焦点分别为,其离心率,且椭圆C经过点.(1)求椭圆C的标准方程;(2)过点M作两条不同的直线与椭圆C分别交于点A,B(均异于点M).若∠AMB的角平分线与y轴平行,试探究直线AB的斜率是否为定值?若是,请给予证明;若不是,请说明理由.21.(12分)已知点P到点的距离比它到直线的距离小1.(1)求点P的轨迹方程;(2)点M,N在点P的轨迹上且位于x轴的两侧,(其中O为坐标原点),求面积的最小值.22.(10分)已知等比数列的公比,,.(1)求数列的通项公式;(2)令,若,求满足条件的最大整数n.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】假设公差为,依题意可得.所以.故选C.考点:等差数列的性质.2、B【解析】直线恒过定点,而此点在圆的内部,故可得直线与圆的位置关系.【详解】直线恒过定点,而,故点在圆的内部,故直线与圆的位置关系为相交,故选:B.3、D【解析】由直线与垂直得到的斜率,再利用斜率与倾斜角的关系即可得到答案.【详解】因为直线与垂直,且,所以,解得,设的倾斜角为,,所以.故选:D4、C【解析】由条件利用函数的奇偶性和单调性,可得对恒成立,转化为且对恒成立.求得相应的最大值和最小值,从而求得的范围【详解】定义在上的函数为偶函数,且在上递减,在上单调递增,若不等式在上恒成立,即在上恒成立在上恒成立,即在上恒成立,即且在上恒成立令,则,,,,在上递增,上递减,令,当时,,在上递减,故可知,解得,所以实数m的取值范围是故选:C5、A【解析】因为,所以曲线在点(1,0)处的切线的斜率为,所以切线方程为,即,选A6、D【解析】根据斜率的公式,可以得到的值是定值,然后结合已知逐一判断即可.【详解】设,所以有,,因此,所以有,,,,,,故,,.故选:D【点睛】关键点睛:利用斜率公式得到之间的关系是解题的关键.7、D【解析】在△中有,再应用正弦定理求,再在△中,即可求塔高.【详解】由题设知:,又,△中,可得,在△中,,则.故选:D8、B【解析】①③可以通过分析奇偶性和结合图象证明出符合要求,②④可以举出反例.【详解】是奇函数,且与圆O的两交点坐标为,能够将圆O的周长和面积同时等分为两个部分,故符合题意,①正确;同理函数是圆O的一个太极函数,③正确;例如,是偶函数,也能将将圆O的周长和面积同时等分为两个部分,故②错误;函数的图象关于原点对称不是为圆O的太极函数的充要条件,例如为奇函数,但不满足将圆O的周长和面积同时等分为两个部分,所以④错误;故选:B9、C【解析】根据等差数列的定义判断【详解】设的公差为,则,是等差数列,,是常数列,也是等差数列,若,则不是等差数列,故选:C10、B【解析】不妨设点为第一象限的交点,结合椭圆与双曲线的定义得到,进而结合余弦定理得到,即,令然后结合三角函数即可求出结果.【详解】不妨设点为第一象限的交点,则由椭圆的定义可得,由双曲线的定义可得,所以,因此,即,所以,即,令因此,其中,所以当时,有最大值,最大值为,故选:B.【点睛】一、椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=a2-c2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围)二、双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=c2-a2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围)11、A【解析】由可求出直线过定点,作出图象,求出和,数形结合可得或,即可求解.【详解】由可得:,由可得,所以直线:过定点,由可得,作出图象如图所示:,,若直线与线段相交,则或,解得或,所以实数的取值范围是或,故选:A.12、D【解析】根据条件设,,由条件求得,即可求得双曲线方程.【详解】设,则由已知得,,又,,又,,双曲线的标准方程为.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】如图所示,建立空间直角坐标系,设,,,,,由向量法可得,令,,,利用导数研究函数的单调性即可求得的最大值,从而可得答案【详解】解:由题意,根据已知条件,直线AB,AD,AQ两两互相垂直,所以建立如图所示空间直角坐标系不妨设,则,0,,,0,,,1,,设,,,,,,,,,,,令,,则,函数在上单调递减,时,函数取得最大值,的最大值为故答案为:14、##【解析】直接根据概率和为1计算得到答案.【详解】.故答案为:.15、.(答案不唯一)【解析】给出一个符合条件的值即可.【详解】当时,曲线表示焦点在轴上的双曲线,故答案为:.(答案不唯一)16、【解析】根据牛顿迭代法的知识求得.【详解】构造函数,,切线的方程为,与轴交点的横坐标为.,所以切线的方程为,与轴交点的横坐标为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)f(x)=x3﹣3x2+1;(Ⅱ)最大值为1,最小值为﹣3【解析】(Ⅰ)求导可得f′(x)的解析式,根据导数的几何意义,可得k=f′(1)=-3,又在x=2处有极值,所以f′(2)=0,即可求得a,b的值,即可得答案;(Ⅱ)由(Ⅰ)可得f′(x)的解析式,令f′(x)=0,解得x=0或x=2,讨论f(x)在﹣1<x<0,0<x<1上的单调性,即可求得f(x)的极值,检验边界值,即可得答案.【详解】(Ⅰ)由题意得:f′(x)=3x2+2ax+b,所以k=f′(1)=3+2a+b=﹣3,f′(2)=12+4a+b=0,解得a=﹣3,b=0,所以f(x)=x3﹣3x2+1;(Ⅱ)由(Ⅰ)知,令f′(x)=3x2﹣6x=0,解得x=0或x=2,当﹣1<x<0时,f′(x)>0,f(x)在(﹣1,0)是增函数,当0<x<1时,f′(x)<0,f(x)在(0,1)是减函数,所以f(x)的极大值为f(0)=1,又f(1)=﹣1,f(﹣1)=﹣3,所以f(x)在[﹣1,1]上的最大值为1,最小值为﹣318、(1)(2)存在;【解析】(1)设出点的坐标,根据,即可直接求出动点M的轨迹方程;(2)根据题意写出直线的方程,把直线的方程与曲线的方程联立,消元,写韦达;根据条件,同时结合三角形的面积公式可得出;从而结合韦达定理可求出点T的坐标.【小问1详解】设,由,得,即,所以动点M的轨迹方程为.【小问2详解】设PT与RT夹角为,QT与RT夹角为,因为,所以,即,所以,设,,,直线l的方程为,因为,所以,即,所以,即①,由,得,所以,代入①式,得,解得,所以存在点,使得对任意且,都有.19、(1),(2)4【解析】(1)根据,即可将直线的极坐标方程转化为普通方程;消参数,即可求出曲线的普通方程;(2)由题意易知,求出直线的参数方程,将其代入曲线的普通方程,利用一元二次方程根和系数关系式的应用,即可求出结果【小问1详解】解:直线极坐标方程为,即,又,可得的普通方程为,曲线的参数方程是(为参数,消参数,所以曲线的普通方程为【小问2详解】解:在中令得,,倾斜角,的参数方程可设为,即(为参数),将其代入,得,,设,对应的参数分别为,,则,,,异号,.20、(1)(2)是,证明见解析【解析】(1)根据离心率及椭圆上的点可求解;(2)根据题意分别设出直线MA、MB,与椭圆联立后得到相关点的坐标,再通过斜率公式计算即可证明.【小问1详解】由,得,所以a2=9b2①,又椭圆过点,则②,由①②解得a=6,b=2,所以椭圆的标准方程为【小问2详解】设直线MA的斜率为k,点,因为∠AMB的平分线与y轴平行,所以直线MA与MB的斜率互为相反数,则直线MB的斜率为-k.联立直线MA与椭圆方程,得整理,得,所以,同理可得,所以,又所以为定值.21、(1);(2).【解析】(1)根据给定条件可得点P到点的距离等于它到直线的距离,再由抛物线定义即可得解.(2)由(1)设出点M,N的坐标,再结合给定条件及三角形面积定理列式,借助均值不等式计算作答.【小问1详解】因点P到点的距离比它到直线的距离小1,显然点P与F在直线l同侧,于是得点P到点的距离等于它到直线的距离,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年新疆建设职业技术学院单招职业适应性测试题库及完整答案详解1套
- 2026年六盘水幼儿师范高等专科学校单招职业倾向性测试题库及参考答案详解
- 2026年福建理工大学单招职业技能考试题库及答案详解1套
- 2026年四川西南航空职业学院单招职业适应性考试题库带答案详解
- 2026年安徽冶金科技职业学院单招职业适应性考试题库附答案详解
- 2026年甘肃农业职业技术学院单招职业倾向性考试题库及参考答案详解
- 2026年辽宁经济职业技术学院单招职业技能测试题库含答案详解
- 2026年芜湖职业技术学院单招职业技能考试题库及参考答案详解一套
- 2026年抚州职业技术学院单招职业倾向性测试题库含答案详解
- 2026年辽宁冶金职业技术学院单招职业技能测试题库及完整答案详解1套
- 【完整版】2026 年国考《行测》真题(地市级卷)
- 2025重庆水务集团股份有限公司招聘64人考试笔试参考题库附答案解析
- 赠与合同范本房屋模板
- 药材合作种植协议书
- 医疗风险预警的指标体系与干预策略
- 《公路水运工程生产安全重大事故隐患判定标准宣传图册》
- DB34-T 2089-2025 电梯安装、改造、修理和年度自检规范
- 炼油厂储运系统基础知识
- 2026河南省春节晚会招商方案
- 塑料破碎合伙协议书
- 学校反恐防暴安全课件
评论
0/150
提交评论