七年级数学试卷幂的运算易错压轴解答题训练经典题目(及答案)_第1页
七年级数学试卷幂的运算易错压轴解答题训练经典题目(及答案)_第2页
七年级数学试卷幂的运算易错压轴解答题训练经典题目(及答案)_第3页
七年级数学试卷幂的运算易错压轴解答题训练经典题目(及答案)_第4页
七年级数学试卷幂的运算易错压轴解答题训练经典题目(及答案)_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

七年级数学试卷幂的运算易错压轴解答题训练经典题目(及答案)一、幂的运算易错压轴解答题1.阅读材料,根据材料回答:例如1:(-2)3×33=(-2)×(-2)×(-2)×3×3×3=[(-2)×3]×[(-2)×3]×[(-2)×3]=[(-2)×3]3=(-6)3=-216.例如2:86×0.1256=8×8×8×8×8×8×0.125×0.125×0.125×0.125×0.125×0.125=(8×0.125)×(8×0.125)×(8×0.125)×(8×0.125)×(8×0.125)×(8×0.125)=(8×0.125)6=1.(1)仿照上面材料的计算方法计算:;(2)由上面的计算可总结出一个规律:(用字母表示)an·bn=________;(3)用(2)的规律计算:-0.42018××.2.我们约定,如:.(1)试求和的值;(2)想一想,是否与相等,并说明理由.3.

(1)你发现了吗?,,由上述计算,我们发;________(2)请你通过计算,判断与之间的关系;(3)我们可以发现:________(4)利用以上的发现计算:.4.

算一算,填一填.(1)你发现了吗?()2=×,()﹣2=,由上述计算,我们发现()2________()﹣2(2)仿照(1),请你通过计算,判断与之间的关系.(3)我们可以发现:()﹣m________(ab≠0).(4)计算:()﹣2.5.规定两数a,b之间的一种运算,记作(a,b):如果,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,27)=________,(5,1)=________,(2,)=________.(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4)小明给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n,所以3x=4,即(3,4)=x,所以(3n,4n)=(3,4).请你尝试运用这种方法证明下面这个等式:(3,4)+(3,5)=(3,20)6.若am=an(a>0且a≠1,m、n是正整数),则m=n.你能利用上面的结论解决下面两个问题吗?试试看,相信你一定行!(1)若2×2x=8,求x的值;(2)若(9x)2=38,求x的值.7.已知am=2,an=4,求下列各式的值(1)am+n(2)a3m+2n.8.已知n为正整数,且x2n=4(1)求xn﹣3•x3(n+1)的值;(2)求9(x3n)2﹣13(x2)2n的值.9.综合题。(1)若10x=3,10y=2,求代数式103x+4y的值.(2)已知:3m+2n﹣6=0,求8m•4n的值.10.计算(1)|﹣1|+(﹣2)3+(7﹣π)0﹣()﹣1(2)(﹣a2)3﹣6a2•a4(3)3x﹣2(x﹣1)﹣3(x+1)(4)(m4)2+m5•m3+(﹣m)4•m4.11.阅读下列材料:一般地,n个相同的因数a相乘记为an,记为an.如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若an=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为logab(即logab=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算以下各对数的值:log24=________,log216=________,log264=________.(2)观察(1)中三数4、16、64之间满足怎样的关系式,log24、log216、log264之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?logaM+logaN=________;(a>0且a≠1,M>0,N>0)(4)根据幂的运算法则:an•am=an+m以及对数的含义证明上述结论.12.请阅读材料:①一般地,n个相同的因数a相乘:记为an,如23=8,此时,指数3叫做以2为底8的对数,记为(即=3).

②一般地,若an=b(a>0且a≠1,b>0),则指数n叫做以a为底b的对数,记为(即=n),如34=81,则指数4叫做以3为底81的对数,记为(即=4).(1)计算下列各对数的值:log24________

log216=________

log264=________

.(2)观察(1)题中的三数4、16、64之间存在的关系式是________

,那么log24、log216、log264存在的关系式是________

(3)由(2)题的结果,你能归纳出一个一般性的结论吗?logaM+logaN=________

(a>0且a≠1,M>0,N>0)(4)请你运用幂的运算法则am•an=am+n以及上述中对数的定义证明(3)中你所归纳的结论.【参考答案】***试卷处理标记,请不要删除一、幂的运算易错压轴解答题1.(1)解:(2)(ab)n(3)解:-0.42018××(32)2019=52【解析】【解答】解:(2)根据题意可得:;故答案为:;【分析】(解析:(1)解:(2)(3)解:-0.42018××【解析】【解答】解:(2)根据题意可得:;故答案为:;【分析】(1)根据积的乘方法则的逆用计算即可求解;(2)根据题意找到规律即可;(3)逆用积的乘方法则及同底数幂的乘法法则的逆用计算即可求解.2.(1)解:根据题中的新定义得:1012脳103=1015;(2)解:相等,理由如下:∵∵∴=【解析】【分析】(1)根据题干提供的新定义运算法则,直接计算解析:(1)解:根据题中的新定义得:1012103=1015;(2)解:相等,理由如下:∵∵∴=【解析】【分析】(1)根据题干提供的新定义运算法则,直接计算可得答案;(2)根据,可得同底数幂的乘法,根据同底数幂的乘法,可得答案.3.(1)=(2)解:计算得(54)3=12564,(45)-3=12564∴(54)3=(45)-3(3)=(4)解:利用以上的发现计算:=【解析】解析:(1)=(2)解:计算得,∴(3)=(4)解:利用以上的发现计算:=【解析】【分析】(1)类比题干中乘方的运算即可得;(2)类比题干中分数的乘方计算方法计算后即可得;(3)根据(1)、(2)的规律即可得;(4)逆用积的乘方将原式变形为=,再利用同底数幂进行计算可得4.(1)=(2)解:(3)=(4)解:(715)﹣2=(157)2=22549【解析】【解答】解:(1)我们发现(23)2=(32)﹣2;故答案为:=;(3解析:(1)=(2)解:(3)=(4)解:()﹣2=()2=【解析】【解答】解:(1)我们发现()2=()﹣2;故答案为:=;(3)我们可以发现:()﹣m=(ab≠0).故答案为:=;【分析】本题为观察总结规律题型,细心运算即可.5.(1)3;0;-2(2)解:设(3,4)=x,(3,5)=y,则3x=4,3y=5,∴,∴(3,20)=x+y,∴(3,4)+(3,5)=(3,20)【解析】(1)∵33=27解析:(1)3;0;-2(2)解:设(3,4)=x,(3,5)=y,则,=5,∴,∴(3,20)=x+y,∴(3,4)+(3,5)=(3,20)【解析】(1)∵33=27,50=1,2-2=

,∴(3,27)=3,(5,1)=0,(2,)=-2.故答案依次为:3,0,-2【分析】根据新定义的运算得到幂的运算规律,由幂的运算规律得到相等的等式.6.(1)解:原方程等价于2x+1=23,x+1=3,解得x=2;(2)解:原方程等价于34x=38,4x=8,解得x=2.【解析】【分析】(1)根据am=an(解析:(1)解:原方程等价于2x+1=23,x+1=3,解得x=2;(2)解:原方程等价于34x=38,4x=8,解得x=2.【解析】【分析】(1)根据am=an(a>0且a≠1,m、n是正整数),则m=n,可得答案;(2)根据am=an(a>0且a≠1,m、n是正整数),则m=n,可得答案.7.(1)解:∵am=2,an=4,∴am+n=am×an=2×4=8(2)解:∵am=2,an=4,∴a3m+2n=(am)3×(an)2=8×16=128【解析】【分析】(1)利解析:(1)解:∵am=2,an=4,∴am+n=am×an=2×4=8(2)解:∵am=2,an=4,∴a3m+2n=(am)3×(an)2=8×16=128【解析】【分析】(1)利用同底数幂的乘法运算法则求出即可;(2)利用同底数幂的乘法运算法则结合幂的乘方运算法则求出即可.8.(1)解:∵x2n=4,∴xn﹣3•x3(n+1)=xn﹣3•x3n+3=x4n=(x2n)2=42=16(2)解:∵x2n=4,∴9(x3n)2﹣13(x2)2n=9x6n﹣13解析:(1)解:∵x2n=4,∴xn﹣3•x3(n+1)=xn﹣3•x3n+3=x4n=(x2n)2=42=16(2)解:∵x2n=4,∴9(x3n)2﹣13(x2)2n=9x6n﹣13x4n=9(x2n)3﹣13(x2n)2=9×43﹣13×42=576﹣208=368【解析】【分析】(1)根据同底数幂的乘法法则及幂的乘方法则将原式化简为(x2n)2,再把x2n=4代入进行计算即可;(2)根据同底数幂的乘法法则及幂的乘方法则将原式化简为9(x2n)3﹣13(x2n)2,再把x2n=4代入进行计算即可.9.(1)解:∵10x=3,10y=2,∴代数式103x+4y=(10x)3×(10y)4=33×24=432(2)解:∵3m+2n﹣6=0,∴3m+2n=6,∴8m•4n=23解析:(1)解:∵10x=3,10y=2,∴代数式103x+4y=(10x)3×(10y)4=33×24=432(2)解:∵3m+2n﹣6=0,∴3m+2n=6,∴8m•4n=23m•22n=23m+2n=26=64【解析】【分析】(1)直接利用同底数幂的乘法运算法则将原式变形求出答案;(2)直接利用同底数幂的乘法运算法则将原式变形求出答案.10.(1)解:|﹣1|+(﹣2)3+(7﹣π)0﹣(13)﹣1=1﹣8+1﹣3=﹣9(2)解:(﹣a2)3﹣6a2•a4=﹣a6﹣6a6=﹣7a6(3)解:3x﹣2(x﹣1)﹣3(解析:(1)解:|﹣1|+(﹣2)3+(7﹣π)0﹣()﹣1=1﹣8+1﹣3=﹣9(2)解:(﹣a2)3﹣6a2•a4=﹣a6﹣6a6=﹣7a6(3)解:3x﹣2(x﹣1)﹣3(x+1)=3x﹣2x+2﹣3x﹣3=﹣2x﹣1(4)解:(m4)2+m5•m3+(﹣m)4•m4=m8+m8+m8=3m8【解析】【分析】(1)直接利用绝对值的性质以及结合零指数幂的性质和负整数指数幂的性质化简求出答案;(2)直接利用幂的乘方运算法则以及同底数幂的乘法运算法则分别化简求出答案;(3)直接利用单项式乘以多项式运算法则化简求出答案;(4)直接利用幂的乘方运算法则化简求出答案.11.(1)2;4;6(2)解:4×16=64,log24+log216=log264(3)loga(MN)(4)证明:设logaM=b1,logaN=b2,则ab1=M,解析:(1)2;4;6(2)解:4×16=64,log24+log216=log264(3)loga(MN)(4)证明:设logaM=b1,logaN=b2,则=M,=N,∴MN=,∴b1+b2=loga(MN)即logaM+logaN=loga(MN)【解析】【解答】解:(1)log24=2,log216=4,log264=6;(3)logaM+logaN=loga(MN);【分析】首先认真阅读题目,准确理解对数的定义,把握好对数与指数的关系.(1)根据对数的定义求解;(2)认真观察,不难找到规律:4×16=64,log24+log216=log264;(3)有特殊到一般,得出结论:logaM+logaN=loga(MN);(4)首先可设logaM=b1,logaN=b2,再根据幂的运算法则:an•am=an+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论