2026年华师大七年级数学下册第6章综合素质评价卷(含答案)_第1页
2026年华师大七年级数学下册第6章综合素质评价卷(含答案)_第2页
2026年华师大七年级数学下册第6章综合素质评价卷(含答案)_第3页
2026年华师大七年级数学下册第6章综合素质评价卷(含答案)_第4页
2026年华师大七年级数学下册第6章综合素质评价卷(含答案)_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第6章综合素质评价

一、选择题(每题3分,共30分)

1.[2024周口期末]把2x-3y=1变形成用x表示y的形式为()

2x-l2x+l

A."丁B.y=3

-3y+l

C.2D.x=2

2.若二是下列某二元一次方程组的解,则这个方程组为()

A.『二3yB.

(x+y=1(y=2x—3

(2x+3y=1,(x+8y=10,

ctx=5y+3{x=2y-3

3.[2024西安满桥区月考]已知方程组:型下列消元过程不正确的是

[a-b=2,(2)

A.代入法消去a,由②得a=b+2代入①

B.代入法消去上由①得匕=7-2Q代入②

C.加减法消去a,①+②x2

D.加减法消去4①+②

4.关于%,y的方程组用tjt奢'的解也是方程3%+2y=17的解,则7几的值

为()

A.3B.1C.-1D.2

5.若4#+»-3y3a+2。-4=2是关于,y的二元一次方程,则2Q+3匕的值为

()

A.0B.-3C.3D.6

6.对于有理数x,y,定义新运算:x^y=ax+by+c,其中a,b,c是常数,

例:3*4=3@+46+0已知2*3=22,3*8=50,那么1*(一2)=()

A.-8B.-7C.-6D.-5

7.逋迪婺学文化《九章算术》是我国古代数学的经典著作,书中有一问题:

“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、

银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金质量相同),乙

袋中装有白银11枚(每枚白银质量相同).称重两袋相等,两袋互相交换1枚

后,甲袋比乙袋轻了13两(袋子质量忽略不计).问黄金、白银每枚各重多少

两?设每枚黄金重工两,每枚白银重y两,根据题意得()

(llx=flOy+%=8%-f-y,

,((1Oy4-x)-(8x+y)=13,(9%—13=lly

(9x=llyf(9x=Uyt

*l(8x+y)-(lOy+x)=13*((10y4-x)-(8x+y)=13

8.某污水处理厂库池里现有待处理的污水瓶吨,另有从城区流入库池的待处理

污水(新流入污水按每小时几吨的定流量增加).若该厂同时开动2台机组,贝IJ

需30小时处理完污水;若同时开动3台机组,见需15小时处理完污水.若要5

小时处理完污水,则需同时开动的机组数为()

A.6台B.7台C.8台D.9台

9.如图,约定:上方相邻的左数与右数之差等于这两数下方箭头共同指向的数.

有以下两个结论,结论I:若m的值为3,则y的值为4;结论H:不论m,几取

何值,x-y的值一定为3.下列判断正确的是()

C.I不对,I【对D.I,II都不对

10.倒考向数学文化在明代的《算法统宗》一书中将用格子计算两个数相乘的方

法称作“铺地锦”,如图①,计算82x34,将乘数82记入上行,乘数34记入

右列,然后用乘数82的每位数字乘以乘数34的每位数字,将结果记入相应的

格子中,最后按斜行加起来,既得2788.如图②,用“铺地锦”的方法表示两

个两位数相乘,下列结论错误的是()

(第10题)

A.b的值为6

B.a为奇数

C.其结果可以表示为101b+10(a+1)—1

D.Q的值小于3

二、填空题倬题4分,共20分)

11.已知则代数式4x—5y的值为_.

(%+y=11,

12.若关于%,y的二元一次方程组的解互为相反数,则k的值

为.

13.将四个完全相同的直角三角形分别拼成正方形(如图①②),边长分别为

6和2.若以一个直角三角形的两条直角边为边向外作正方形(如图③),其面

积分别为Si,S?,则Si-S2=_.

14.[2024杭州期末]七(1)班的小明同学通过《测量硬币的厚度与质量》的实

验得到了每枚硬币的厚度

和质量的数据(如表).他从储蓄罐中取出一把5角和1元的硬币,已知这把硬

币总的金额为15元,他把这把硬币叠起来,用尺子量出它们的总厚度为35mm,

请你帮助小明算出这把硬币的总质量为—g.

1元硬币5角硬币

每枚的厚度/mm1.81.7

每枚的质量/g6.16.0

15.对于一个三位正整数,如果它的百位数字、十位数字之和与个位数字的差

等于7,那么称这个数为“七巧数”.例如:452,因为4+5-2=7,所以452

是“七巧数”;724,因为7+2-4=5。7,所以724不是“七巧数”.若“七

巧数”机满足:所有数位的数字之和是9的倍数,且它的百位数字大于十位数

字,则m的最大值是一.

三、解答题(共70分)

16.(12分)解下列方程组:

(2x+5y=12,

(1)•二,

3x+2y=7;

p^=2,

⑵卜11+^=3;

I43

x+y=5,

(3)y+z=9,

z+%=8.

17.[2024衡阳月考](10分)两名同学对问题“若方程组伊然二的解

是El:'求方程组管的解”提出了各自的观点.甲说:“这个

题目好像条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试

试”.参考他们的讨论,谈谈你的看法(若不能求解,请说明原因;若能够求解,

请写出求解过程).

18.(10分)侬蝉航天科技2024年5月3日17时27分,我国嫦娥六号月球

探测器发射任务圆满成功!嫦娥六号探测器开启世界首次月球背面采样返回之旅.

某超市为了满足广大航天爱好者的需求,计划购进4B两种航天探测器模型进

行销售,据了解,2件4种航天探测器模型和4件B种航天探测器模型的进价共

计140元;3件8种航天探测器模型和2件8种航天探测器模型的进价共计130

元.求48两种航天探测器模型每件的进价分别是多少元.

19.(12分)在解方程组飞①时,由于粗心,甲看错了方程组中

的a,得到的解为匕=1;乙看错了方程组中的b,得到的解为匕=?’根据上面

的信息解答下列问题:

(1)甲把a看成了什么数,乙把b看成了什么数?

(2)求出正确的Q力的值.

(3)求出原方程组的正确解,并代入代数式(x-y)(5x—19y)3求值.

20.(12分)遁溟题垃圾分类某城市正在实施垃圾分类制度,居民需要将垃圾

分为可回收垃圾、易腐垃圾、有害垃圾和其他垃圾四类.某小区为了鼓励居艮积

极参与垃圾分类,决定设立积分奖励机制.规则如下表:

垃圾类别可回收垃圾易腐垃圾有害垃圾其他垃汲

每公斤获得积分ab100无

积分可以兑换部分物品,具体加下表:

物品垃圾袋/卷5元话费券/张水果店打折券/张小区临时停车券/张

积分数800150020001000

已知2公斤可回收垃圾和1.5公斤易腐垃圾可以获得130积分;2.5公斤可回收

垃圾和2公斤易腐垃圾可获得165积分.

(1)求a,b的值.

(2)小明家一季度产出了46公斤可回收垃圾,100公斤易腐垃圾,1公斤有

害垃圾,将这一季度获得的所有积分都兑换成物品,可以有哪些兑换方案?

21.(14分)邀典醺探究根据以下素材,探索完成任务.

如何设计制作木箱方案?

素材1如图①,是一个无盖的木箱,咳木箱由4B,C三种型

号的木板制作而成,而三种型号的木板是由一个大长方

形。“G板材按图②中甲、乙、丙三种不同的切割方式

①②

素材2若有24张大长方形DEFG板材,将板材按图②中的三种

方式进行切割,无材料剩余且恰好可以制作若干个木

箱.

素材3若有20张3型号木板和m张大长方形。EFG板材,将板

材按图②中的三种方式进行切割,无材料剩余且恰好可

以制作若干个木箱.

问题解决

任务1.求4B,C三种型号木板的面积.

任务2.一共可以制作多少个木箱?并求出木箱的总体积.

任务3.请你设计一种合适的切割方案,并求出沉的值.

【参考答案】

第6章综合素质评价

一、选择题(每题3分,共30分)

1.A

2.A

3.C

4.B

【点拨】由题知,方程组卜+2y=3唆②X2+①,得3%=216,所以

%=7m,把x=7nl代入①,得y=-2m,因为关于x,y的方程组《:黄蓝"

的解也是方程3x+2y=17的解,所以把x=7m,y=-2巾代入方程3%+

2y=17,得3X7m+2X(-2m)=17.解得m=1.

5.A

【点拨】因为4/+。一3y3a+2人4=2是关于%,y的二元一次方程,

所以解3;3=1解得

所以2a+3%=6—6=0.故选A.

6.C

【点拨】因为2*3=22,

所以2a+3b+c=22.

因为3*8=50,所以3a+8b+c=50.

2Q+3b+c=22,①

联立得

3a+8b+c=50,②

©x2,得4Q+6b+2c=44,③

⑶)—Q),得Q-2b+c=-6,

所以1*(-2)=a-2b+c=-6.

7.D

8.B

【点拨】设同时开动x台机组,每台机组每小时处理a吨污水,

依题意,得x3°a=m+3On,

侬题息'伶(3xl5a=m+15n,

解得{m=30a,

n=a.

因为5ax=m4-5n=30a+5a,

所以x=7,即需同时开动的机组数为7台.

9.C

【点拨】当m=3时,3—兀=12,解得九=一9,

所以{7汇3,

解得{;二;:故结论I不正确;

由题意得,以必誉,

所以m-n=x—2y—(2y-3x)=4%-4y.

又因为m-n=12,

所以4x—4y=12.

所以x-y=3,

即不论?n,几取何值,x-y的值一定为3,故结论II正确.

10.D

【点拨】如图,设5a的十位数字是小,个位数字是几,

力=2+4,(b=6,

所以Q+1=Q+m,所以m=1,

b—1=n,In=5,

所以A正确.

所以Q=15+5=3.所以B正确,D不正确.

由题意知乘积结果可以表示为100b+10(a+1)+b-1=101b+10(a+1)-

1.所以C正确.

二、填空题(每题4分,共20分)

11.26

12.2

【点拨】解得.£

因为关于X,y的二元一次方程组二^二方的解互为相反数,

所以k—5+3=0,解得k=2.

13.12

【点拨】设四个全等的直角三角形的两条直角边长分别为a,b(a>b),

根据题图①,得Q+b=6,根据题图②,得a—b=2,

联立得『+:=£解得{:=:'

9-b=2,3=2.

所以Si=16,S2=4,

所以Si-$2=12.

14,121

【点拨】设这把硬币中5角的硬币有%枚,1元的硬币有y枚,

由题意得吃W屋35,解哪M

则这把硬币的总质量为6.1x10+6.0x10=121(g).

15.801

【点拨】设“七巧数”m的百位、十位、个位上的数字分别为a,b,c,

根据题意,得卜+?一'=7,幺(〃为正整数)且

①+②,得a+b=等,

所以当n=l_时,Q+b=8,c=l,

所以Q=8,8=0或。=7,8=1或Q=6,b=2或Q=5,b=3.

易得当九=2,3,4…时得不到符合题意的小,

所以m的值为801或711或621或531.

所以m的最大值是801.

三、解答题(共70分)

16.⑴【解】产+5y=12#

(3x+2y=7,②

①X3-②X2,得15y-4y=36-14,

解得y=2,

将y=2代入①,得2%+5x2=12,

解得%=1,

所以原方程组的解为

x-2y+l

=2,

2x71

+彳=3,

原方程组整理得,仁;

①X2+②,得8%=67,

解得x=?,

O

把“票代入①,得票—2y=5,

解得y=16

(67

IX=—,

所以原方程组的解为1

+

Xy..②©

.5,

y+z.9,③

8,

z+X

①+②+③,得2x+2y+2z=22,

整理得%+y+z=ll,④

把①代入④,得5+z=ll,

解得z=6,

把②代入④,得9+x=ll,

解得x=2,

把③代入④,得8+y=ll,

解得y=3,

x—2,

所以原方程组的解为y=3:

2=6,

17.【解】可以求解.

32・

.+2瓦y=5q-aAx+-bAy“①

,{3a2x+2b2y=5c2艾32

-a2x+-b2yQ,

设m=|x,n=|y,

%优+瓦71=C②

・••方程组①可变为lf

Q2m+b2n=c2.

又...俨+瓦x=3,

6y=q,的解是

・la2x+b2y=c2.y=4,

••・方程组②的解是{;二机

32.

二-x=3o,-y=4.

55

•,•%=5,y=10.

:,方程组,翁*。=既'的解是匕=I;

(3a2x+2b2y=5c2(y=10.

18.【解】设4种航天探测器模型每件的进价是不元,B种航天探测器模型每件

的进价是y元,

根据题意,得因案;款

解得{;:20:

答:A种航天探测器模型每件的进价是30元,8种航天探测器模型每件的进价

是2()元.

19.(1)【解】把后二]代入①,得。一3=-2,解得Q=1,

把代入②,得10-6=7,解得6=3.

所以甲把a看成了1,乙把b看成了3.

(2)把g二:'代入①,得5a+3=-2,解得Q=—1,

把后二代入②,得2+8=7,解得b=5.

所以正确的的值分别为一1,5.

(3)由(2)可得原方程组为二12,

解得所以0-丫)(5%-19y)3=8x(一2>=8x(-8)=-64.

20.(1)【解】根据题意,得,黑+:鼠=郎

(2.5a+Zb=165,

解得{M.

(2)小明家一季度获得的积分为46x50+100x20+lx100=4400,设兑

换垃圾袋x卷,5元话费券y张,水果店打折券m张,小区临时停车券几张,

根据题意,得800%+1500y+2000m+1000n=4400,

化简,得8x+15y+20m+lOn=44.

因为15,20,10均为5的倍数,所以易得%=3.

所以原式可化为3y+4m+2n=4.

又因为y,m,n均为自然数,

(y=o,(y=o,

所以M=1,或m=0,

(n=01n=2.

所以共有2种兑换方案.

方案1:兑换垃圾袋3卷,水果店打折券1张;

方案2:兑换垃圾袋3卷,小区临时停车券2张.

21.任务1【解】由题图可知,4型号木板的宽为50+5=10(cm),B型号木

板的宽和。型号木板的长均为(50—10)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论