云南省文山州第一中学2025年数学高二上期末监测试题含解析_第1页
云南省文山州第一中学2025年数学高二上期末监测试题含解析_第2页
云南省文山州第一中学2025年数学高二上期末监测试题含解析_第3页
云南省文山州第一中学2025年数学高二上期末监测试题含解析_第4页
云南省文山州第一中学2025年数学高二上期末监测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省文山州第一中学2025年数学高二上期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,则下列说法正确的是()A.的最小正周期为 B.的图象关于直线C.的一个零点为 D.在区间的最小值为12.在等比数列{an}中,a1=8,a4=64,则a3等于()A.16 B.16或-16C.32 D.32或-323.函数,则不等式的解集是()A. B.C. D.4.在一次抛硬币的试验中,某同学用一枚质地均匀的硬币做了100次试验,发现正面朝上出现了48次,那么出现正面朝上的频率和概率分别为()A.0.48,0.48 B.0.5,0.5C.0.48,0.5 D.0.5,0.485.下列曲线中,与双曲线有相同渐近线是()A. B.C. D.6.已知直线与圆相交于两点,当的面积最大时,的值是()A. B.C. D.7.平面的法向量为,平面的法向量为,则下列命题正确的是()A.,平行 B.,垂直C.,重合 D.,相交不垂直8.在四棱锥中,分别为的中点,则()A. B.C. D.9.已知椭圆C:的左、右焦点分别为F1,F2,过点F1作直线l交椭圆C于M,N两点,则的周长为()A.3 B.4C.6 D.810.设等差数列的前项和为,已知,,则的公差为()A.2 B.3C.4 D.511.如图,在单位正方体中,以为原点,,,为坐标向量建立空间直角坐标系,则平面的法向量是()A.,1, B.,1,C.,, D.,1,12.执行如图所示的程序框图,输出的结果为()A.4 B.9C.23 D.64二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线C的方程为:,F为抛物线C的焦点,倾斜角为的直线过点F交抛物线C于A、B两点,则线段AB的长为________14.若,且数列是严格递增数列或严格递减数列,则实数a取值范围是______15.如图,在棱长为2的正方体中,点分别是棱的中点,是侧面正方形内一点(含边界),若平面,则线段长度的取值范围是__________16.半径为的球的体积为_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线的顶点为原点,焦点F在x轴的正半轴,F到直线的距离为.点为此抛物线上的一点,.直线l与抛物线交于异于N的两点A,B,且.(1)求抛物线方程和N点坐标;(2)求证:直线AB过定点,并求该定点坐标.18.(12分)已知二次曲线的方程:(1)分别求出方程表示椭圆和双曲线的条件;(2)若双曲线与直线有公共点且实轴最长,求双曲线方程;(3)为正整数,且,是否存在两条曲线,其交点P与点满足,若存在,求的值;若不存在,说明理由19.(12分)已知直线和的交点为P,求:(1)过点P且与直线垂直的直线l的方程;(2)以点P为圆心,且与直线相交所得弦长为12的圆的方程;(3)从下面①②两个问题中选一个作答,①若直线l过点,且与两坐标轴的正半轴所围成的三角形面积为,求直线l的方程②求圆心在直线上,与x轴相切,被直线截得的弦长的圆的方程注:如果选择两个问题分别作答,按第一个计分20.(12分)已知焦点为F的抛物线上一点到F的距离是4(1)求抛物线C的方程(2)若不过原点O的直线l与抛物线C交于A,B两点(A,B位于x轴两侧),C的准线与x轴交于点E,直线与分别交于点M,N,若,证明:直线l过定点21.(12分)设点,动圆P经过点F且和直线相切,记动圆的圆心P的轨迹为曲线W(1)求曲线W的方程;(2)直线与曲线W交于A、B两点,其中O为坐标原点,已知点T的坐标为,记直线TA,TB的斜率分别为,,则是否为定值,若是求出,不是说明理由22.(10分)如图,三棱柱的所有棱长都是,平面,为的中点,为的中点(1)证明:直线平面;(2)求平面与平面夹角的余弦值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据余弦函数的图象与性质判断其周期、对称轴、零点、最值即可.【详解】函数,周期为,故A错误;函数图像的对称轴为,,,不是对称轴,故B错误;函数的零点为,,,所以不是零点,故C错误;时,,所以,即,所以,故D正确.故选:D2、C【解析】首先根据a4=a1q3,求得q=2,再由a3=即可得解.【详解】由a4=a1q3,得q3=8,即q=2,所以a3==32.故选:C3、A【解析】利用导数判断函数单调递增,然后进行求解.【详解】对函数进行求导:,因为,,所以,因为,所以f(x)是奇函数,所以在R上单调递增,又因为,所以的解集为.故选:A4、C【解析】频率跟实验次数有关,概率是一种现象的固有属性,与实验次数无关,即可得到答案.【详解】频率跟实验次数有关,出现正面朝上的频率为实验中出现正面朝上的次数除以总试验次数,故为.概率是抛硬币试验的固有属性,与实验次数无关,抛硬币正面朝上的概率为.故选:C5、B【解析】求出已知双曲线的渐近线方程,逐一验证即可.【详解】双曲线的渐近线方程为,而双曲线的渐近线方程为,双曲线的渐近线方程为,双曲线的渐近线方程为,双曲线的渐近线方程为.故选:B6、C【解析】利用点到直线的距离公式和弦长公式可以求出的面积是关于的一个式子,即可求出答案.【详解】圆心到直线的距离,弦长为..当,即时,取得最大值.故选:C.7、B【解析】根据可判断两平面垂直.【详解】因为,所以,所以,垂直.故选:B.8、A【解析】结合空间几何体以及空间向量的线性运算即可求出结果.【详解】因为分别为的中点,则,,,故选:A.9、D【解析】由的周长为,结合椭圆的定义,即可求解.【详解】由题意,椭圆,可得,即,如图所示,根据椭圆的定义,可得的周长为故选:D.10、B【解析】由以及等差数列的性质,可得的值,再结合即可求出公差.【详解】解:,得,,又,两式相减得,则.故选:B.11、A【解析】设平面的法向量是,,,由可求得法向量.【详解】在单位正方体中,以为原点,,,为坐标向量建立空间直角坐标系,,0,,,1,,,1,,,1,,,0,,设平面的法向量是,,,则,取,得,1,,平面的法向量是,1,.故选:.12、C【解析】直接按程序框图运行即可求出结果.【详解】初始化数值,,第一次执行循环体,,,1≥4不成立;第二次执行循环体,,,2≥4不成立;第三次执行循环体,,,3≥4不成立;第四次执行循环体,,,4≥4成立;输出故选:C二、填空题:本题共4小题,每小题5分,共20分。13、8【解析】根据给定条件求出抛物线C的焦点坐标,准线方程,再求出点A,B的横坐标和即可计算作答.【详解】抛物线C:焦点,准线方程为,依题意,直线l的方程为:,由消去x并整理得:,设,则,于是得,所以线段AB的长为8.故答案为:814、【解析】根据数列递增和递减的定义求出实数a的取值范围.【详解】因为数列是严格递增数列或严格递减数列,所以.若数列是严格递增数列,则,即,即恒成立,故;若数列是严格递减数列,则,即,即恒成立,由,故;综上,实数a的取值范围是故答案为:15、【解析】取的中点G,连接FG,BG,FB,由正方体的几何特征,易证平面AEC//平面BFG,再根据是侧面内一点(含边界),且平面,得到点P在线段BG上运动,然后在等腰中求解.【详解】如图所示:取的中点G,连接FG,BG,FB,在正方体中,易得又因为平面BFG,平面BFG,所以平面BFG,同理证得平面BFG,又因为,所以平面AEC//平面BFG,因为是侧面内一点(含边界),且平面,所以点P线段BG上运动,如图所示:在等腰中,作,且,所以,设点F到线段BG的距离为d,由等面积法得,解得,所以线段长度的取值范围是,故答案为:16、【解析】根据球的体积公式求解【详解】根据球的体积公式【点睛】球的体积公式三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)证明见解析,定点【解析】(1)设抛物线的标准方程为,利用点到直线距离公式可求出,再利用焦半径公式可求出N点坐标;(2)设直线的方程为,与抛物线联立,利用韦达定理计算,可得关系,然后代入直线方程可得定点.【小问1详解】设抛物线的标准方程为,,其焦点为则,∴所以抛物线的方程为.,所以,所以.因为,所以,所以.【小问2详解】由题意知,直线的斜率不为0,设直线的方程为(),联立方程得设两个交点,(,).所以所以,即整理得,此时恒成立,此时直线l的方程为,可化为,从而直线过定点.18、(1)时,方程表示椭圆,时,方程表示双曲线;(2);(3)存在,且或或.【解析】(1)当且仅当分母都为正,且不相等时,方程表示椭圆;当且仅当分母异号时,方程表示双曲线(2)将直线与曲线联立化简得:,利用双曲线与直线有公共点,可确定的范围,从而可求双曲线的实轴,进而可得双曲线方程;(3)由(1)知,,是椭圆,,,,是双曲线,结合图象的几何性质,任意两椭圆之间无公共点,任意两双曲线之间无公共点,从而可求【详解】(1)当且仅当时,方程表示椭圆;当且仅当时,方程表示双曲线(2)化简得:△或所以双曲线的实轴为,当时,双曲线实轴最长为此时双曲线方程为(3)由(1)知,,是椭圆,,,,是双曲线,结合图象的几何性质任意两椭圆之间无公共点,任意两双曲线之间无公共点设,,,2,,,6,7,由椭圆与双曲线定义及;所以所以这样的,存在,且或或【点睛】方法点睛:曲线方程的确定可分为两类:若已知曲线类型,则采用待定系数法;若曲线类型未知时,则可利用直接法、定义法、相关点法等求解或者利用分类讨论思想求解.19、(1)(2)(3)答案见解析【解析】(1)联立方程组求得交点的坐标,结合直线与直线垂直,求得直线的斜率为,利用直线的点斜式,即可求解;(2)先求得点到直线的距离为,由圆的的垂径定理列出方程求得圆的半径,即可求解;(3)若选①:设直线l的的斜率为,得到,结合题意列出方程,求得的值,即可求解;若选②,设所求圆的圆心为,半径为,得到,利用圆的垂径定理列出方程求得的值,即可求解.【小问1详解】解:由直线和的交点为P,联立方程组,解得,即,因为直线与直线垂直,所以直线的斜率为,所以过点且与直线垂直的直线方程为,即.【小问2详解】解:因为点到直线的距离为,设所求圆的半径为,由圆的的垂径定理得,弦长,解得,所以所求圆的方程为.【小问3详解】解:若选①:直线l过点,且与两坐标轴的正半轴所围成的三角形面积为,设直线l的的斜率为,可得直线的方程为,即,则直线与坐标轴的交点分别为,由,解得或,所以所求直线的方程为或.若选②,设所求圆的圆心为,半径为,因为圆与x轴相切,可得,又由圆心到直线的距离为,利用圆的垂径定理可得,即,解得,即圆心坐标为或,所以所求圆的方程为或.20、(1);(2)证明过程见解析.【解析】(1)利用抛物线的定义进行求解即可;(2)设出直线l的方程,与抛物线方程联立,根据一元二次方程的根与系数关系进行求解证明即可.【小问1详解】该抛物线的准线方程为,因为点到F的距离是4,所以有,所以抛物线C的方程为:;【小问2详解】该抛物线的准线方程为,设直线l的方程为:,与抛物线方程联立,得,不妨设,因此,直线的斜率为:,所以方程为:,当时,,即,同理,因为,所以有,而,所以有,所以直线l的方程为:,因此直线l恒过.【点睛】关键点睛:把直线l的方程为:,利用一元二次方程根与系数关系是解题的关键.21、(1);(2)是定值,.【解析】(1)根据给定条件结合抛物线定义直接求解作答.(2)联立直线与抛物线方程,借助韦达定理、斜率坐标公式计算作答.【小问1详解】过点P作直线的垂线,垂足为点N,依题意,,则动点P的轨迹是以为焦点,直线为准线的抛物线,所以曲线W的方程是.【小问2详解】设,,由消去x并整理得:,则,,因,,则,,因此,所以.【点睛】方法点睛:求定值问题常见的方法:(1)从特殊入手,求出定值,再证明这个值与变量无关;(2)直接推理、计算

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论