第18章 分式(知识+5大易错+易错训练)(知识清单)(原卷版)-人教版(2024)八上_第1页
第18章 分式(知识+5大易错+易错训练)(知识清单)(原卷版)-人教版(2024)八上_第2页
第18章 分式(知识+5大易错+易错训练)(知识清单)(原卷版)-人教版(2024)八上_第3页
第18章 分式(知识+5大易错+易错训练)(知识清单)(原卷版)-人教版(2024)八上_第4页
第18章 分式(知识+5大易错+易错训练)(知识清单)(原卷版)-人教版(2024)八上_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第十八章分式清单01分式的概念及基本性质1.分式的概念(1)分式的概念:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式.(2)因为0不能做除数,所以分式的分母不能为0.(3)分式是两个整式相除的商,分子就是被除式,分母就是除式,而分数线可以理解为除号,还兼有括号的作用.(4)分式的分母必须含有字母,而分子可以含字母,也可以不含字母,亦即从形式上看是的形式,从本质上看分母必须含有字母,同时,分母不等于零,且只看初始状态,不要化简.2.分式有意义的条件(1)分式有意义的条件是分母不等于零.(2)分式无意义的条件是分母等于零.(3)分式的值为正数的条件是分子、分母同号.(4)分式的值为负数的条件是分子、分母异号.3.分式的值为零的条件分式值为零的条件是分子等于零且分母不等于零.4.分式的基本性质(1)分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.(2)分式中的符号法则:分子、分母、分式本身同时改变两处的符号,分式的值不变.5.约分(1)约分的定义:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.(2)确定公因式要分为系数、字母、字母的指数来分别确定.①分式约分的结果可能是最简分式,也可能是整式.②当分子与分母含有负号时,一般把负号提到分式本身的前面.③约分时,分子与分母都必须是乘积式,如果是多项式的,必须先分解因式.6.通分(1)通分的定义:把几个异分母的分式分别化为与原来的分式相等的同分母的分式,这样的分式变形叫做分式的通分.(2)通分的关键是确定最简公分母.①最简公分母的系数取各分母系数的最小公倍数.②最简公分母的字母因式取各分母所有字母的最高次幂的积.7.最简分式最简分式的定义:一个分式的分子与分母没有公因式时,叫最简分式.8.最简公分母(1)最简公分母的定义:通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.清单02分式的运算1.分式的加减法(1)同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减.(2)异分母分式加减法法则:把分母不相同的几个分式化成分母相同的分式,叫做通分,经过通分,异分母分式的加减就转化为同分母分式的加减.2.分式的乘除法(1)分式的乘法法则:分式乘分式,用分子的积作积的分子,分母的积作积的分母.(2)分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.(3)分式的乘方法则:把分子、分母分别乘方.(4)分式的乘、除、乘方混合运算.运算顺序应先把各个分式进行乘方运算,再进行分式的乘除运算,即“先乘方,再乘除”.3.分式的混合运算(1)分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.(2)最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.(3)分式的混合运算,一般按常规运算顺序,但有时应先根据题目的特点,运用乘法的运算律进行灵活运算.4.分式的化简求值先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.清单03整数指数幂1.负指数幂、零指数幂:=1\*GB3①am∙an=am+n,(m,n是正整数);=2\*GB3②(am)n=3\*GB3③(ab)m=ambm,(m是正整数);=4\*GB3④am÷an=am-n,(=5\*GB3⑤(ab)n=anbn,(n是正整数);=6\*GB3若按照=4\*GB3④运算,当m<n时。如:a2÷a3=a针对这种现象,我们规定,当n为正整数时,a-n=1an(a≠2.科学记数法表示绝对值小于1的数一般,一个小于1的数可以表示为a×10-n步骤:确定a值的大小。1<a<10;确定n的值。原数变为a后,小数点向前移动x位,则原数相应扩大了10x清单04分式方程定义及解法1.分式方程的定义分式方程的定义:分母中含有未知数的方程叫做分式方程.判断一个方程是否为分式方程主要是看这个方程的分母中是否含有未知数.2.分式方程的解求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.3.解分式方程(1)解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.(2)解分式方程时,去分母后所得整式方程的解有可能使原方程中的分母为0,所以应如下检验:①将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解.②将整式方程的解代入最简公分母,如果最简公分母的值为0,则整式方程的解不是原分式方程的解.所以解分式方程时,一定要检验.4.换元法解分式方程(1)解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.(2)我们常用的是整体换元法,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现.5.分式方程的增根(1)增根的定义:在分式方程变形时,有可能产生不适合原方程的根,即代入分式方程后分母的值为0或是转化后的整式方程的根恰好是原方程未知数的允许值之外的值的根,叫做原方程的增根.(2)增根的产生的原因:对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取哪些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件.当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根.(3)检验增根的方法:把由分式方程化成的整式方程的解代入最简公分母,看最简公分母是否为0,如果为0,则是增根;如果不是0,则是原分式方程的根.清单05分式方程的应用1.分式方程的应用(1)列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.(2)要掌握常见问题中的基本关系,如行程问题:速度=路程时间;工作量问题:工作效率=工作量工作时间等等.列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力.【易错一】求使分式为正(负)数时未知数的取值范围一、易错总结(2点)1.忽略分母不为0的前提:只关注分子符号,忘记分母不能为0,导致取值范围包含使分式无意义的解。2.不等号方向错误:解不等式时,两边乘除负数未变号,或联立不等式组时写错不等关系,如误将“分子正且分母正”写成“分子正或分母正”。二、方法技巧(2点)1.符号法则法:分式正负由分子、分母符号共同决定,“正”需分子分母同号(均正或均负),“负”需分子分母异号(一正一负),分情况列不等式组求解。2.转化整式法:先确定分母不为0,再将分式不等式转化为整式不等式(分子×分母>0或<0),解整式不等式后结合分母限制,确定最终取值范围。【例1】已知分式的值是非负数,那么x的取值范围是(

)A.且 B. C. D.且【易错二】求使分式值为整数时未知数的整数值一、易错总结(2点)1.忽略分母不为0的限制:只计算使分子能被分母整除的未知数,未排除使分母为0的取值,导致结果包含无意义的解。2.漏解整数情况:未考虑整除的正负性,如求\(\frac{x+1}{2}\)为整数时,只算正整数解,漏了负整数和0的情况。二、方法技巧(2点)1.整除定义法:设分式值为整数\(k\),将分式化为“分子=分母×k”的整式形式,解出未知数用\(k\)表示,再结合未知数为整数确定\(k\)的可能值,进而求未知数。2.因式分解法:对分子分母因式分解,若分母是分子的因式,直接分析整除条件;若不是,通过变形让分母整除分子,再结合整数性质确定未知数取值。【例2-1】对于非负整数,使得是一个正整数,则可取的个数有(

)A. B. C. D.【例2-2】若分式的值为整数,则整数x的值为.【易错三】分式方程无解与增根一、易错总结(2点)1.混淆“无解”与“增根”概念:认为增根就是无解,忽略“整式方程无解时,分式方程也无解”的情况,如\(\frac{1}{x-1}=\frac{x}{x-1}+2\),整式方程无解,分式方程也无解,而非增根。2.漏验增根:解分式方程去分母后,只解整式方程,未将解代入最简公分母检验是否为增根,导致错误保留无意义的解。二、方法技巧(2点)1.概念辨析法:增根是“使最简公分母为0的整式方程的解”,仅出现在整式方程有解的情况;无解包含“有增根”和“整式方程本身无解”两类,通过判断整式方程是否有解及解是否为增根,区分两者。2.检验三步法:解分式方程后,①将整式方程的解代入最简公分母;②若公分母为0,此解是增根,分式方程无解;③若公分母不为0,此解是分式方程的解,据此快速判断。【例3-1】若关于x的分式方程无解,则实数.【例3-2】(23-24八年级上·贵州铜仁·期末)关于x的分式方程有增根,则m为.【易错四】已知方程的根的情况求参数的取值范围一、易错总结(2点)1.忽略分式分母不为0的限制:仅根据整式方程根的情况求参数,未排除使原分式分母为0的参数值,导致取值范围包含无效解。2.混淆“无解”对应的参数情况:误将“分式方程有增根”等同于“分式方程无解”,忽略“整式方程本身无解时,分式方程也无解”的情况,漏算参数取值。二、方法技巧(2点)1.分类讨论法:先将分式方程化为整式方程,分两类讨论:①整式方程无解时,求对应参数值;②整式方程有解时,排除使分母为0的参数值,结合根的要求(如整数根、正数根)确定范围。2.代入检验法:若已知方程有增根,先求增根(令最简公分母为0的解),代入整式方程求参数;若方程无解,需同时考虑整式方程无解和有增根两种情况,整合参数范围。【例4】(24-25八年级上·重庆永川·期末)若分式方程有正数解,则的取值范围为.【易错五】与分式及分式运算有关的新定义型问题一、易错总结(2点)1.误解新定义规则:未逐字分析题干中“新运算符号”的定义(如分子分母对应关系、运算顺序),直接套用常规分式运算,导致步骤错误。2.忽略隐含限制条件:新定义问题常隐含分母不为0的要求,解题时只关注新运算流程,漏查运算中所有分式的分母(包括新定义里的分母),出现无意义的解。二、方法技巧(2点)1.拆解定义法:将新定义内容拆解为“已知条件”和“运算规则”,用具体字母或数值代入规则,转化为熟悉的分式化简、求值问题,再按常规步骤计算。2.双重验证法:完成运算后,先验证结果是否符合新定义的形式要求,再检查所有分式的分母是否为0,确保运算过程和结果均有效,避免隐含错误。【例5-1】(24-25八年级下·河南新乡·期中)定义:若分式A与分式B的差等于它们的积,即,则称分式B是分式A的“关联分式”.例如:与,,是的“关联分式”.(1)已知分式,则__________的“关联分式”(填“是”或“不是”);(2)求分式的“关联分式”;(3)观察(1)(2)的结果,寻找规律,直接写出分式的“关联分式”:__________.【例5-2】(24-25八年级下·江苏扬州·期中)给出定义:若一个分式约分后分子是一个常数,分母是一个一次整式,则称这个分式为“好看分式”,例如,,则是“好看分式”.根据上述定义,解决问题.(1)分式、,其中是“好看分式”的是________.(2)①若分式(为常数且)是一个“好看分式”,求的值;②若分式(为常数且)是一个“好看分式”,求的值;(3)若分式(、为常数且)是一个“好看分式”,且、都是正整数,直接写出的所有可能结果.一、单选题1.(25-26七年级上·上海·期中)已知分式的值是非负数,那么的取值范围是(

)A.且 B. C. D.且2.(24-25八年级下·河南开封·期末)下列关于分式的判断,正确的是(

)A.当时,的值为0B.当时,有意义C.无论为何值,的值不可能为整数D.无论为何值,的值总为正数3.(25-26八年级上·河北石家庄·期中)若关于的方程有增根.则增根为(

)A. B. C. D.4.(25-26九年级上·浙江杭州·阶段练习)已知关于的分式方程的解是正数,则的取值范围为(

)A. B.且C.且 D.5.(24-25八年级下·福建泉州·期末)我们定义:若两个分式与的和为常数,且,则称是的“和约分式”,称为关于的“和约分式值”.如分式,,,则是的“和约分式”,.已知分式,,且是为的“和约分式”,则关于的“和约分式值”是(

)A. B. C. D.二、填空题6.(25-26八年级上·江苏苏州·阶段练习)若分式的值为正数,则x的取值范围是.7.(25-26八年级上·湖南岳阳·阶段练习)若关于的方程的解为负数,则的取值范围是.8.(25-26八年级上·全国·课后作业)填空:(1)当时,分式的值为正;(2)当为时,分式的值为负;(3)当为时,分式的值为正整数.9.(24-25八年级上·甘肃平凉·期末)若关于的分式方程无解,则的值为.10.(24-25八年级下·陕西咸阳·期末)若关于的不等式组有解,且关于的分式方程的解为正数,则满足条件的所有整数的值的和为.11.(2025八年级下·全国·专题练习)定义:若一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“和谐分式”.例如:,则是“和谐分式”.若分式的值为整数,则整数x的值为.三、解答题12.(25-26八年级上·全国·课后作业)(1)当x取什么值时,分式的值为0;(2)当x取什么值时,分式的值为正;(3)当x取什么值时,分式的值为负.13.(22-23八年级上·全国·

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论