苏教版七年级下册期末数学重点中学试题经典套题答案_第1页
苏教版七年级下册期末数学重点中学试题经典套题答案_第2页
苏教版七年级下册期末数学重点中学试题经典套题答案_第3页
苏教版七年级下册期末数学重点中学试题经典套题答案_第4页
苏教版七年级下册期末数学重点中学试题经典套题答案_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

苏教版七年级下册期末数学重点中学试题经典套题答案一、选择题1.下列计算正确的是()A. B.C. D.答案:C解析:C【分析】分别利用合并同类项、同底数幂的乘法、除法以及幂的乘方法则进行计算,即可得出结论.【详解】解:A、,故此选项计算错误,不符合题意;B、,故此选项计算错误,不符合题意;C、,,故此选项计算正确,符合题意;D、,故此选项计算错误,不符合题意;故选:C.【点睛】此题考查了合并同类项、同底数幂的乘法、除法及幂的乘方的运算,熟练掌握相关运算法则并能灵活运用其准确求解是解题的关键.2.下列图形中,有关角的说法正确的是()A.∠1与∠2是同位角 B.∠3与∠4是内错角C.∠3与∠5是对顶角 D.∠4与∠5相等答案:C解析:C【分析】根据同位角、内错角、对顶角的定义判断即可求解.【详解】A、∠1与∠2不是同位角,原说法错误,故此选项不符合题意;B、∠1与∠4不是内错角,原说法错误,故此选项不符合题意;C、∠3与∠5是对顶角,原说法正确,故此选项符合题意;D、∠4与∠5不相等,原说法错误,故此选项不符合题意;故选:C.【点睛】本题考查同位角、内错角、对顶角的定义,解题的关键是熟练掌握三线八角的定义及其区分.3.设[x)表示大于x的最小整数,如[3)=4,[-1.2)=-1,下列结论:①[0)=0;②[x)-x的最小值是0;③[x)-x的最大值是1;④存在实数x,使[x)-x=0.5成立,其中正确的是()A.①② B.③④ C.①②③ D.②③④答案:B解析:B【分析】利用题中的新定义计算即可求出值.【详解】解:由题意可知:∵[x)表示大于x的最小整数,∴设[x)=n,则n-1≤x<n,∴[x)-1≤x<[x),∴0<[x)-x≤1,∴①,故①错误;②可无限接近0,但取不到0,无最小值,故②错误;③的最大值是1,当x为整数时,故③正确;④存在实数,使成立,比如x=1.5,故④正确,故选:B.【点睛】此题考查了解一元一次不等式,读懂新定义,并熟练掌握运算法则是解本题的关键.4.若实数在数轴上的位置如图所示,则下列不等式成立的是()A. B. C. D.答案:A解析:A【详解】解析:本题考查了不等式的性质.由数轴上可以看出,,,根据“不等式两边同时乘以一个正数,不等号方向不改变”可得出,故A正确.5.如果点在第三象限,那么的取值范围是()A. B. C. D.答案:C解析:C【分析】第三象限的符号特征为(-,-),据此列不等式组解答.【详解】∵P(m,2m-1)在第三象限,∴,解得:,故选C.【点睛】本题考查象限的符号特征和不等式组的应用,熟练掌握第三象限符号为(-,-)是关键.6.下列关于命题“若,则”的说法,正确的是()A.是真命题 B.是假命题,反例是“”C.是假命题,反例是“” D.是假命题,反例是“”答案:C解析:C【分析】根据真假命题的定义判断,分清条件和结论,若为假命题,举反例时要满足:条件成立,但结论不成立.【详解】A.当时,满足,但-1﹤0,所以为假命题,此选项错题;B.当,,不满足,此选项错误;C.当时,满足,但-2﹤1,假命题,此选项正确;D.当时,,不满足,此选项错误,故选:C.【点睛】本题考查真命题与假命题,熟练掌握命题真假的判断方法是解答的关键.7.把一根起点为0的数轴弯折成如图所示的样子,虚线最下面第1个数字是0,往上第2个数字是6,第3个数字是21,…,则第5个数字是()A.78 B.80 C.82 D.89答案:A解析:A【分析】观察根据排列的规律得到第1个数字为0,第2个数字为0加6个数即为6,第3个数字为从6开始加15个数得到21,第4个数字为从21开始加24个数即45,…,由此得到后面加的数比前一个加的数多9,由此得到第5个数字为0+6+(6+9×1)+(6+9×2)+(6+9×3).【详解】解:∵第一个数字为0,第二个数字为0+6=6,第三个数字为0+6+15=21,第四个数字为0+6+15+24=45,第五个数字为0+6+15+24+33=78,故选:A.【点睛】此题主要考查了数字变化规律,发现数在变化过程中各边上点的数字的排列规律是解题关键.8.如图,将三角形纸片折叠,为折痕,点C落外的点F处,,,,则()A.95° B.105° C.115° D.125°答案:C解析:C【分析】先根据三角形的内角和定理可出∠C=180°-∠A-∠B=180°-65°-75°=40°;再根据折叠的性质得到∠F=∠C=40°,再利用三角形的内角和定理以及外角性质得∠3+∠2+∠5+∠F=180°,∠5=∠4+∠C=∠4+40°,即可得到∠3+∠4=65°,然后利用平角的定义即可求出∠1,即.【详解】解:如图,∵∠A=65°,∠B=75°,∴∠C=180°-∠A-∠B=180°-65°-75°=40°;又∵将三角形纸片的一角折叠,使点C落在△ABC外,∴∠F=∠C=40°,而∠3+∠2+∠5+∠F=180°,∠5=∠4+∠C=∠4+40°,∵,即∠2=35°,∴∠3+35°+∠4+40°+40°=180°,∴∠3+∠4=65°,∴∠1=180°-65°=115°.即故选:C.【点睛】本题考查了折叠问题中的角度计算问题,注意折叠前后,对应角相等,熟练掌握三角形的内角和定理以及外角性质是解题的关键.二、填空题9.计算:________.解析:【分析】原式先计算积的乘方和幂的乘方,再进行单项式乘以单项式运算即可得到答案.【详解】解:故答案为:【点睛】此题主要考查了积的乘方和幂的乘方以及单项式乘以单项式运算,熟练掌握运算法则是解答此题的关键.10.以下四个命题:①在同一平面内,过一点有且只有一条直线与已知直线垂直;②两条直线被第三条直线所截,同旁内角互补;③数轴上的每一个点都表示一个实数;④如果点的坐标满足,那么点一定在第二象限.其中正确命题的序号为___.解析:①③【分析】依次分析判断即可得到答案.【详解】①在同一平面内,过一点有且只有一条直线与已知直线垂直,故该项正确;②两条平行线被第三条直线所截,同旁内角互补,故该项错误;③数轴上的每一个点都表示一个实数,故该项正确;④如果点的坐标满足,则x与y异号,那么点P在第二或第四象限,故该项错误;故答案为:①③.【点睛】此题考查命题的正确与否,正确掌握各知识点并熟练运用解题是关键.11.若一个正多边形的每一个外角都是,则这个正多边形的边数为__________.解析:12【分析】根据正多边形的每一个外角都相等以及多边形的外角和为360°,多边形的边数=360°÷30°,计算即可求解.【详解】解:这个正多边形的边数:360°÷30°=12,故答案为:12.【点睛】本题考查了多边形的内角与外角的关系,熟记正多边形的边数与外角的关系是解题的关键.12.若ab=2,a-b=3,则代数式ab2-a2b=_________.解析:6【分析】用提公因式法将ab2-a2b分解为含有ab,a-b的形式,代入即可.【详解】解:∵ab=2,a-b=3,∴ab2-a2b=-ab(a-b)=2×3=6,故答案为:6.【点睛】本题考查了用提公因式法因式分解,解题的关键是将ab2-a2b分解为含有ab,a-b的形式,用整体代入即可.13.已知且y﹣x2,则k的取值范围是_____.解析:【分析】将方程组中两个方程相减可得y﹣x=3k﹣1,结合y﹣x<2得出关于k的不等式,解之可得答案.【详解】解:,①﹣②,得:﹣x+y=3k﹣1,即y﹣x=3k﹣1,∵y﹣x<2,∴3k﹣1<2,解得k<1,故答案为:k<1.【点睛】本题考查了一元一次不等式的解法,以及二元一次方程组的特殊解法,在求二元一次方程组中两个未知数的和或差的时候,有时可以采用把两个方程直接相加或相减的方法,而不必求出两个未知数的具体值.14.如图,在一块长为20m,为10m的长方形草地上,修建两条宽为2m的长方形小路,则这块草地的绿地面积(图中空白部分)为___m2.解析:【分析】直接利用平移道路的方法得出草地的绿地面积=(20−2)×(10−2),进而得出答案.【详解】由图象可得,这块草地的绿地面积为:(20﹣2)×(10﹣2)=144(m2).故答案为:144.【点睛】此题主要考查了生活中的平移现象,正确平移道路是解题关键.15.把边长相等的正五边形ABCDE和正方形ABFG按照如图所示的方式叠合在一起,则∠AEG的度数是_________答案:81°【详解】正五边形的内角的度数是×(5−2)×180°=108°,正方形的内角是90°,则∠EAG=108°−90°=18°,∵AE=AG,∴∠AEG=∠AGE=(180°-18°)解析:81°【详解】正五边形的内角的度数是×(5−2)×180°=108°,正方形的内角是90°,则∠EAG=108°−90°=18°,∵AE=AG,∴∠AEG=∠AGE=(180°-18°)=81°.故答案为81°.16.如图,在中,,,点为边上一点且不与、重合,将沿翻折得到,直线与直线相交于点.若,当为等腰三角形时,__________.(用含的代数式表示)答案:或或【分析】当△DEF为等腰三角形时,分EF=DF,ED=EF和DE=EF三种情况进行讨论求解即可.【详解】解:由翻折的性质可知:,,如图,当EF=DF时,则,∵∠EDF=∠CDE-∠C解析:或或【分析】当△DEF为等腰三角形时,分EF=DF,ED=EF和DE=EF三种情况进行讨论求解即可.【详解】解:由翻折的性质可知:,,如图,当EF=DF时,则,∵∠EDF=∠CDE-∠CDB,∠CDB=∠A+∠ACD,∴,又∵∠ADC=180°-∠A-∠ACD,∴,∴;当ED=EF时,,∴,∴,∴;当DE=EF时,,∵∴,∴,∴∴综上所述,当△DEF为等腰三角形时,或或,故答案为:或或.【点睛】本题主要考查了折叠的性质,等腰三角形的性质,三角形外角的性质,三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.17.计算:(1)(2)答案:(1)-4;(2)【分析】(1)先算乘方,负整数指数幂和零指数幂,再算加减法,即可求解;(2)先算积的乘方,再算除法,即可求解.【详解】解:(1)原式==-4;(2)原式==.【点解析:(1)-4;(2)【分析】(1)先算乘方,负整数指数幂和零指数幂,再算加减法,即可求解;(2)先算积的乘方,再算除法,即可求解.【详解】解:(1)原式==-4;(2)原式==.【点睛】本题主要考查实数的混合运算,整式的除法,熟练掌握负整数指数幂和零指数幂以及幂的乘方运算,是解题的关键.18.因式分解:(1)(2)(3)答案:(1);(2);(3)【分析】(1)直接根据十字相乘法分解因式进行分解即可;(2)先提公因式,再对余下的多项式利用平方差公式继续分解即可;(3)先利用平方差公式进行分解,再对公因式利用完全平解析:(1);(2);(3)【分析】(1)直接根据十字相乘法分解因式进行分解即可;(2)先提公因式,再对余下的多项式利用平方差公式继续分解即可;(3)先利用平方差公式进行分解,再对公因式利用完全平方公式继续分解即可.【详解】解:(1);(2);(3)【点睛】本题考查了用十字相乘法、提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.19.解方程组:(1)(2)答案:(1);(2)【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【详解】解:(1),①②得:,解得:,把代入①得:,解得:,则方程组的解解析:(1);(2)【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【详解】解:(1),①②得:,解得:,把代入①得:,解得:,则方程组的解为;(2)方程组整理得:,①②得:,解得:,把代入①得:,解得:,则方程组的解为.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.解不等式组并把解集在数轴上表示出来.答案:无解,见解析【分析】先求得每个不等式的解集,后确定不等式组的解集即可.【详解】∵∴解不等式①,得x≥8,解不等式②得:x<1,在数轴上表示不等式①②的解解析:无解,见解析【分析】先求得每个不等式的解集,后确定不等式组的解集即可.【详解】∵∴解不等式①,得x≥8,解不等式②得:x<1,在数轴上表示不等式①②的解集为:可以看出这两个不等式的解集没有公共部分,所以此不等式组无解.【点睛】本题考查了一元一次不等式组的解法,熟练掌握不等式组的求解步骤是解题的关键.三、解答题21.如图,已知直线分别交直线于点平分平分.求证:.(写出证明的依据)答案:证明见解析【分析】根据平行线的判定条件,进行证明即可得到答案.【详解】解:(已知),(两直线平行,同位角相等)平分,平分(已知),,(角平分线定义),(等量代换),(同位角相等,两解析:证明见解析【分析】根据平行线的判定条件,进行证明即可得到答案.【详解】解:(已知),(两直线平行,同位角相等)平分,平分(已知),,(角平分线定义),(等量代换),(同位角相等,两直线平行).【点睛】本题主要考查了平行线的性质与判定,角平分线的性质,解题的关键在于能够熟练掌握相关知识进行求解.22.某共享单车运营公司准备采购一批共享单车投入市场,而共享单车安装公司由于抽调不出足够熟练工人,准备招聘一批新工人.已知1名熟练工人和2名新工人每天共安装28辆共享单车;2名熟练工人每天装的共享单车数与3名新工人每天安装的共享单车数一样多.(1)求每名熟练工人和新工人每天分别可以安装多少辆共享单车?(2)共享单车安装公司原有熟练工a人,现招聘n名新工人(a>n),由于时间紧急,工人们安装的共享单车中不能正常投入运营的占5%,若要求必须在30天内交付运营公司5700辆合格品投入市场,求a、n的所有可能结果.答案:(1)每名熟练工人每天可以安装12辆共享单车,每名新工人每天可以安装8辆共享单车;(2),,【分析】(1)设每名熟练工人每天可以安装x辆共享单车,每名新工人每天可以安装y辆共享单车,根据“1名熟解析:(1)每名熟练工人每天可以安装12辆共享单车,每名新工人每天可以安装8辆共享单车;(2),,【分析】(1)设每名熟练工人每天可以安装x辆共享单车,每名新工人每天可以安装y辆共享单车,根据“1名熟练工人和2名新工人每天共安装28辆共享单车;2名熟练工人每天装的共享单车数与3名新工人每天安装的共享单车数一样多”列方程组求解即可;(2)根据“在30天内交付运营公司5700辆合格共享单车”得出含有n和a的方程,整理得出n和a的关系,由a>n解得a的范围,再根据n、a均为正整数可得答案.【详解】解:(1)设每名熟练工人每天可以安装x辆共享单车,每名新工人每天可以安装y辆共享单车,根据题意,得:解得,答:每名熟练工人每天可以安装12辆共享单车,每名新工人每天可以安装8辆共享单车;(2)根据题意,得:30×(8n+12a)×(1-5%)=5700,整理,得:,∵a>n,∴,解得a>10,∵n、a均为正整数,∴,,【点睛】本题主要考查二元一次方程组的应用,解题的关键是理解题意,找到题目蕴含的相等关系.23.学校计划向某花卉供应商家定制一批花卉来装扮校园(花盆全部为同一型号),该商家委托某货运公司负责这批花卉的运输工作.该货运公司有甲、乙两种专门运输花卉的货车,已知1辆甲型货车和3辆乙型货车满载一次可运输1700盆花卉;3辆甲型货车和1辆乙型货车满载一次可运输1900盆花卉.(1)求1辆甲型货车满载一次可运输多少盆花卉,1辆乙型货车满载一次可运输多少盆花卉?(2)学校计划定制6500盆花卉,该货运公司将同时派出甲型货车m辆、乙型货n辆来运输这批花卉,一次性运输完毕,并且每辆货车都满载,请问有哪几个运输方案?答案:(1)1辆甲型货车满载一次可运输500盆花卉,1辆乙型货车满载一次可运输400盆花卉;(2)共有三种运输方案:①1辆甲型货车,15辆乙型货车;②5辆甲型货车,10辆乙型货车;③9辆甲型货车,5辆乙型解析:(1)1辆甲型货车满载一次可运输500盆花卉,1辆乙型货车满载一次可运输400盆花卉;(2)共有三种运输方案:①1辆甲型货车,15辆乙型货车;②5辆甲型货车,10辆乙型货车;③9辆甲型货车,5辆乙型货车.【分析】(1)设1辆甲型货车满载一次可运输x盆花卉,1辆乙型货车满载一次可运输y盆花卉,根据题目中已知的两种数量关系,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据(1)所求结果,可得,结合m,n为正整数,即可得出各运输方案.【详解】解:(1)1辆甲型货车满载一次可运输x盆花卉,1辆乙型货车满载一次可运输y盆花卉,依题意得:,解得.答:甲型货车每辆可装载500盆花卉,乙型货车每辆可装载400盆花卉.(2)由题意得:,∴.∵m,n为正整数,∴或或.∴共有三种运输方案:①1辆甲型货车,15辆乙型货车;②5辆甲型货车,10辆乙型货车;③9辆甲型货车,5辆乙型货车.【点睛】本题考查了二元一次方程组以及二元一次方程的整数解应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出二元一次方程并求出整数解.24.互动学习课堂上某小组同学对一个课题展开了探究.小亮:已知,如图三角形,点是三角形内一点,连接,,试探究与,,之间的关系.小明:可以用三角形内角和定理去解决.小丽:用外角的相关结论也能解决.(1)请你在横线上补全小明的探究过程:∵,(______)∴,(等式性质)∵,∴,∴.(______)(2)请你按照小丽的思路完成探究过程;(3)利用探究的结果,解决下列问题:①如图①,在凹四边形中,,,求______;②如图②,在凹四边形中,与的角平分线交于点,,,则______;③如图③,,的十等分线相交于点、、、…、,若,,则的度数为______;④如图④,,的角平分线交于点,则,与之间的数量关系是______;⑤如图⑤,,的角平分线交于点,,,求的度数.答案:(1)三角形内角和180°;等量代换;(2)见解析;(3)①;②;③;④;⑤【分析】(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断;(2)想要利用外角的性质求解,就需要构造外解析:(1)三角形内角和180°;等量代换;(2)见解析;(3)①;②;③;④;⑤【分析】(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断;(2)想要利用外角的性质求解,就需要构造外角,因此延长交于,然后根据外角的性质确定,,即可判断与,,之间的关系;(3)①连接BC,然后根据(1)中结论,代入已知条件即可求解;②连接BC,然后根据(1)中结论,求得的和,进而得到的和,然后根据角平分线求得的和,进而求得,然后利用三角形内角和定理,即可求解;③连接BC,首先求得,然后根据十等分线和三角形内角和的性质得到,然后得到的和,最后根据(1)中结论即可求解;④设与的交点为点,首先利用根据外角的性质将用两种形式表示出来,然后得到,然后根据角平分线的性质,移项整理即可判断;⑤根据(1)问结论,得到的和,然后根据角平分线的性质得到的和,然后利用三角形内角和性质即可求解.【详解】(1)∵,(三角形内角和180°)∴,(等式性质)∵,∴,∴.(等量代换)故答案为:三角形内角和180°;等量代换.(2)如图,延长交于,由三角形外角性质可知,,,∴.(3)①如图①所示,连接BC,,根据(1)中结论,得,∴,∴;②如图②所示,连接BC,,根据(1)中结论,得,∴,∵与的角平分线交于点,∴,,∴,∵,,∴,∴,∵,∴;③如图③所示,连接BC,,根据(1)中结论,得,∵,,∴,∵与的十等分线交于点,∴,,∴,∴,∵,∴,∴,∴,∴;④如图④所示,设与的交点为点,∵平分,平分,∴,,∵,,∴,∴,∴,即;⑤∵,的角平分线交于点,∴,∴.【点睛】本题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论