版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
苏教七年级下册期末数学专题资料试卷解析一、选择题1.下列运算正确的是()A.(x+3)2=x2+9 B.a2•a3=a6C.(x﹣9)(x+9)=x2﹣9 D.(a2)3=a62.下列四个图形中,和是内错角的是()A. B. C. D.3.不等式4x>7x﹣9的正整数解的是()A.0,1,2 B.1,2 C.1,2,3 D.0,1,2,34.若,则下列各式中正确的是()A. B. C. D.5.不等式组的解集是,那么m的取值范围()A. B. C. D.6.下列命题:(1)如果,那么点是线段的中点:(2)不相等的两个角一定不是对角:(3)直角三角形的两个锐角互余.(4)同位角相等:(5)两点之间直线最短,其中真命题的个数有()A.1个 B.2个 C.3个 D.4个7.古希腊著名的毕达哥拉斯学派把1,3,6,10,…这样的数称为“三角形数”(如图①),而把1,4,9,16,…这样的数称为“正方形数”(如图②).如果规定a1=1,a2=3,a3=6,a4=10,…;b1=1,b2=4,b3=9,b4=16,…;y1=2a1+b1,y2=2a2+b2,y3=2a3+b3,y4=2a4+b4,….那么,按此规定得y6=()A.78 B.72 C.66 D.568.如图,在△ACB中,∠ACB=100°,∠A=20°,D是AB上一点.将△ABC沿CD折叠,使点B落在AC边上的B′处,则∠ADB′等于()A.25° B.30° C.35° D.40°二、填空题9.计算:=_______.10.以下四个命题:①-的立方根是;②要调查一批灯泡的使用寿命适宜用抽样调查;③两条直线被第三条直线所截,同旁内角互补;④已知∠ABC与其内部一点D,过点D作DE∥BA,作DF∥BC,则∠EDF=∠B.其中假命题的序号______.11.如图,在七边形ABCDEFG中,AB、ED的延长线交于点O,若∠1、∠2、∠3、∠4的外角和等于225°,则∠BOD=______°.12.一个正整数,加上57可得到一个完全平方数,再加上57可得到另一个完全平方数,则这个正整数为___________.(一个数如果是另一个数的完全平方,那么就称这个数为完全平方数,如0,1,4,9,16等)13.已知关于x,y的二元一次方程组,①当方程组的解是时,m,n的值满足;②当时,无论n取何值,的值始终不变;③当方程组的解是时,方程组解为;④当时,满足x,y都是非负整数的解最多有2组.以上说法:正确的是_____________(填写序号).14.如图,中,,,,.点是线段上的一个动点,则的最小值为______.15.中华人民共和国国旗上的五角星的五个角的和是__________度.16.一副直角三角板如图放置,其中∠B=∠D=90°,∠E=45°,∠A=30°,将三角板CDE绕点C顺时针旋转α度(0°<α<180°).若DE所在直线与三角板ABC各边所在直线平行,则α的度数为___.17.计算:(1)﹣32+(﹣)﹣2﹣(π﹣5)0﹣|﹣2|;(2)(3a+2b)(3a﹣2b)﹣3a(a﹣2b).18.因式分解:(1)(2)19.解方程组:(1);(2).20.解不等式组.请结合题意,完成本题的解答:(1)解不等式①,得___________;(2)解不等式②,得___________;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为___________.三、解答题21.如图,已知点E、F在直线上,点G在线段上,与交于点H,,.(1)求证:;(2)若,求的度数.22.嘉嘉坚持每天做运动.已知某两组运动都由波比跳和深蹲组成,每个波比跳耗时5秒,每个深蹲也耗时5秒.运动软件显示,完成第一组运动,嘉嘉做了20个波比跳和40个深蹲,共消耗热量132大卡;完成第二组运动,嘉嘉做了20个波比跳和70个深蹲,共消耗热量156大卡.每个动作之间的衔接时间忽略不计.(1)每个波比跳和每个深蹲各消耗热量多少大卡?(2)若嘉嘉只做波比跳和深蹲两个动作,花10分钟,消耗至少200大卡,嘉嘉至少要做多少个波比跳?23.已知关于x,y的方程组(1)请直接写出方程x+2y-6=0的所有正整数解;(2)若方程组的解满足x+y=0,求m的值;(3)无论实数m取何值时,方程x-2y+mx+5=0总有一个固定的解,求出这个解.(4)若方程组的解中x恰为整数,m也为整数,求m的值.24.如图,平分,平分,请判断与的位置关系并说明理由;如图,当且与的位置关系保持不变,移动直角顶点,使,当直角顶点点移动时,问与否存在确定的数量关系?并说明理由.如图,为线段上一定点,点为直线上一动点且与的位置关系保持不变,①当点在射线上运动时(点除外),与有何数量关系?猜想结论并说明理由.②当点在射线的反向延长线上运动时(点除外),与有何数量关系?直接写出猜想结论,不需说明理由.25.已知:直线,点E,F分别在直线AB,CD上,点M为两平行线内部一点.(1)如图1,∠AEM,∠M,∠CFM的数量关系为________;(直接写出答案)(2)如图2,∠MEB和∠MFD的角平分线交于点N,若∠EMF等于130°,求∠ENF的度数;(3)如图3,点G为直线CD上一点,延长GM交直线AB于点Q,点P为MG上一点,射线PF、EH相交于点H,满足,,设∠EMF=α,求∠H的度数(用含α的代数式表示).【参考答案】一、选择题1.D解析:D【分析】直接根据完全平方公式、平方差公式,同底数幂的乘法和幂的乘方计算法则求解判断即可.【详解】解:A、(x+3)2=x2+6x+9,故原题计算错误;B、a2•a3=a5,故原题计算错误;C、(x﹣9)(x+9)=x2﹣81,故原题计算错误;D、(a2)3=a6,故原题计算正确;故选D.【点睛】本题主要考查了完全平方公式、平方差公式,同底数幂的乘法和幂的乘方计算,解题的关键在于能够熟练掌握相关知识进行求解.2.C解析:C【分析】根据内错角的概念:处于两条被截直线之间,截线的两侧,再逐一判断即可.【详解】解:A、∠1与∠2不是内错角,选项错误,不符合题意;B、∠1与∠2不是内错角,选项错误,不符合题意;C、∠1与∠2是内错角,选项正确,符合题意;D、∠1和∠2不是内错角,选项错误,不符合题意;故选:C.【点睛】本题考查了内错角,关键是根据内错角的概念解答.注意:内错角的边构成“Z”形.3.B解析:B【分析】首先解不等式,再从不等式的解集中找出适合条件的整数即可.【详解】解:移项,得4x﹣7x>﹣9,合并同类项,得﹣3x>﹣9,系数化为1,得x<3,∴不等式4x>7x﹣9的正整数解为1,2.故选:B.【点睛】本题考查一元一次不等式的整数解,解题的关键是明确一元一次不等式的解法.4.D解析:D【分析】根据不等式的性质,进行逐个判断即可得到答案.【详解】解:A、因为,当,时,故此选项错误;B、因为,所以即,则,故此选项错误;C、因为,所以,故此选项错误;D、因为,所以即,故此选项正确;故选D.【点睛】本题主要考查了不等式的性质,熟记不等式的性质的内容是解此题的关键.5.A解析:A【分析】先求出不等式的解集,再根据不等式组的解集得出答案即可.【详解】解不等式①,得:∵不等式组的解集是∴故选择:A.【点睛】本题考查了解一元一次不等式组,能根据不等式的解集和不等式组的解集得出关于m的不等式是解此题的关键.6.B解析:B【详解】(1)如果AC=BC,那么点C不一定是线段AB的中点;故(1)是假命题;(2)不相等的两个角一定不是对顶角;故(2)是真命题;(3)直角三角形的两个锐角互余;故(3)是真命题;(4)两直线平行,同位角相等;故(4)是假命题;(5)两点之间线段最短;故(5)是假命题;真命题的个数有2个;故选B.7.A解析:A【分析】根据题中给出的数据可得,,把相关数值代入的代数式计算即可.【详解】解:∵=1,=1+2=3,=1+2+3=6,=1+2+3+4=10,…;,=4,,,…;∴,∴.故选A.【点睛】本题主要考查了图形与数字规律的探索,解题的关键在于能够准确找到规律进行求解.8.D解析:D【详解】∵在△ACB中,∠ACB=100°,∠A=20°,∴∠B=180°-100°-20°=60°,∵△CDB′由△CDB翻折而成,∴∠CB′D=∠B=60°,∵∠CB′D是△AB′D的外角,∴∠ADB′=∠CB′D-∠A=60°-20°=40°.故选D.点睛:本题考查的是图形的翻折变换及三角形外角的性质,熟知图形翻折不变性的性质是解答此题的关键.二、填空题9.【解析】原式.10.A解析:①③④【分析】利用立方根的定义对①进行判断;根据普查和抽样调查的特点对②进行判断;根据平行线的性质对③进行判断.画好符合题意的图形,利用推理的方法判断④.【详解】解:的立方根是,所以①为假命题;要调查一批灯泡的使用寿命适宜用抽样调查,所以②为真命题;两条平行直线被第三条直线所截,同旁内角互补,所以③为假命题;已知∠ABC与其内部一点D,过D点作DE∥BA,作DF∥BC,则或所以④为假命题.理由如下:.故答案为①③④.【点睛】本题考查了命题的“真”“假”判断.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可,掌握以上知识是解题的关键.11.A解析:45【分析】依据七边形AOEFG的外角和为360°,即可得到∠AOE的邻补角的度数,进而得出∠BOD的度数.【详解】解:∵五边形AOEFG的外角和为360°,且∠1、∠2、∠3、∠4对应的邻补角和等于225°,∴∠AOE的邻补角为360°-225°=135°,∴∠BOD=180°-135°=45°,故答案为:45.【点睛】本题主要考查了多边形的内角与外角,掌握多边形的外角和等于360度是解题的关键.12.727或7【分析】设这个数为m,得到,化简得到,再利用分解因式求不定方程的整数解,再求m的值,进而得出答案.【详解】解:设这个数为m,则,两式相减得,即,当y+x=57,y-x=1时,成立,解得:x=28,y=29,∴m=x2-57=282-57=727,当y+x=19,y-x=3时,成立,解得:x=8,y=11,∴m=x2-57=82-57=7,故答案为:727或7.【点睛】此题主要考查了运用公式法因式分解以及二元一次方程组的解法,得出y+x=57,y-x=1和y+x=19,y-x=3是解题关键.13.①②【分析】将代入原方程组,求出m和n的值,可判断①;将代入原方程组,可判断②;根据原方程组的解为,可得新方程组满足,求出x和y的值,可判断③;将代入原方程组,求出x和y的值,再找到当方程组的解为非负整数时n的部分值,可判断④.【详解】解:①将代入中,得:,解得:,则,故①正确;②当时,有,则,故②正确;③当方程组的解是时,则,∵新方程组为,整理,得,∴,解得:,故③错误;④当时,方程组为,(1)×3-(2),得:,解得:,将代入(1)得:,∴原方程组的解为,∵x,y都是非负整数,∴当n=2时,;当n=时,;当n=时,;故④错误,故答案为:①②.【点睛】本题考查了二元一次方程组的解和解二元一次方程组,解题的关键是理解题意,掌握方程组的解即为能使方程组中两方程成立的未知数的值.14.C解析:【分析】当CP⊥AB时,CP的值最小,利用面积法求解即可.【详解】解:在Rt△ABC中,∠ACB=90°,AC=5,BC=12,AB=13,当CP⊥AB时,CP的值最小,此时:△ABC的面积=•AB•CP=•AC•BC,∴13CP=5×12,∴PC=,故答案为:.【点睛】本题主要考查了垂线段最短和三角形的面积公式,解题的关键是学会利用面积法求高.15.180°【分析】根据每个内角的度数和内角的个数即可求出答案.【详解】解:如图示,连接,,,,五边形为正五边形所以每个内角为.五个角的和为.故答案是:180°.【点睛】解析:180°【分析】根据每个内角的度数和内角的个数即可求出答案.【详解】解:如图示,连接,,,,五边形为正五边形所以每个内角为.五个角的和为.故答案是:180°.【点睛】本题考查的是正多边形的性质,外角的性质,等腰三角形的性质,知道五角星的每一个角都相等是解题的关键.16.90°,30°,45°【分析】分4种情况:①当CD∥AB时,②当ED∥AC时,③当ED∥BC时,④当EC∥AB时,分类讨论,即可求解.【详解】解:①当CD∥AB时,则∠DCB=90°,即:α解析:90°,30°,45°【分析】分4种情况:①当CD∥AB时,②当ED∥AC时,③当ED∥BC时,④当EC∥AB时,分类讨论,即可求解.【详解】解:①当CD∥AB时,则∠DCB=90°,即:α=90°;②当ED∥AC时,则∠DCA=90°,即:α=120°-90°=30°;③当ED∥BC时,则∠DCB=90°,即:α=90°;④当EC∥AB时,则∠ECB=90°,即:α=90°-45°=45°.故答案是:90°,30°,45°.【点睛】本题主要考查平行线的性质,关键是分类讨论,掌握平行线的性质.17.(1)-8;(2)6a2+6ab-4b2【分析】(1)先逐项化简,再算加减即可;(2)先根据平方差公式、单项式与多项式的乘法法则计算,再去括号合并同类项.【详解】解:(1)原式=-9+4-解析:(1)-8;(2)6a2+6ab-4b2【分析】(1)先逐项化简,再算加减即可;(2)先根据平方差公式、单项式与多项式的乘法法则计算,再去括号合并同类项.【详解】解:(1)原式=-9+4-1-2=-8;(2)原式=9a2-4b2-(3a2-6ab)=9a2-4b2-3a2+6ab=6a2-4b2+6ab.【点睛】本题考查了有理数的混合运算,零指数幂和负整数指数幂的意义,以及整式的混合运算,熟练掌握运算法则是解答本题的关键.18.(1);(2)【分析】(1)先提公因式x,再利用平方差公式进行分解即可;(2)利用完全平方公式进行分解即可;【详解】解:(1)==;(2);【点睛】考查提公因式法、公式法分解因式,正解析:(1);(2)【分析】(1)先提公因式x,再利用平方差公式进行分解即可;(2)利用完全平方公式进行分解即可;【详解】解:(1)==;(2);【点睛】考查提公因式法、公式法分解因式,正确的找出公因式、掌握平方差、完全平方公式的结构特征是应用的前提.19.(1);(2).【分析】(1)方程组利用加减消元法求出解即可.(2)方程组整理后,利用加减消元法求出解即可.【详解】解:(1)①+②×5,得13x=13,解得x=1.把x=1代入②,得解析:(1);(2).【分析】(1)方程组利用加减消元法求出解即可.(2)方程组整理后,利用加减消元法求出解即可.【详解】解:(1)①+②×5,得13x=13,解得x=1.把x=1代入②,得y=1,则方程组的解为;(2)将方程组整理,得,①-②,得4y=8,解得y=2,把y=2代入②,得x=3,则方程组的解为;【点睛】本题考查了二元一次方程组的解法,解题的关键是能熟练运用加减消元法解二元一次方程组.20.(1);(2);(3)见解析;(4)【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:(1)解不等式①,去括号解析:(1);(2);(3)见解析;(4)【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:(1)解不等式①,去括号,移项得:解得x>﹣2.(2)解不等式②,去括号得:解得;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为.故答案为x>﹣2,,.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.三、解答题21.(1)见解析;(2)70°【分析】(1)根据同位角相等,两直线平行可得CE∥GF,再根据平行线的性质可得∠C=∠DGF,再等量代换可得∠DGF=∠EFG,进而证明AB∥CD;(2)结合(1)根解析:(1)见解析;(2)70°【分析】(1)根据同位角相等,两直线平行可得CE∥GF,再根据平行线的性质可得∠C=∠DGF,再等量代换可得∠DGF=∠EFG,进而证明AB∥CD;(2)结合(1)根据∠EHF=70°,∠D=30°,利用三角形内角和定理和平行线的性质即可求∠BEM的度数.【详解】(1)证明:∵∠CED=∠GHD,∴CEGF,∴∠C=∠DGF,又∵∠C=∠EFG,∴∠DGF=∠EFG,∴;(2)解:∵∠CED=∠GHD,∠GHD=∠EHF=80°,∴∠CED=80°,在CDE中,∠CED=80°,∠D=30°,∴∠C=180°﹣80°﹣30°=70°,∵AB∥CD,∴∠BEM=∠C=70°,答:∠BEM的度数为70°.【点睛】本题考查了平行线的判定与性质以及三角形的内角和,解决本题的关键是准确区分平行线的判定与性质,并熟练运用.22.(1)每个波比跳消耗热量5大卡,每个深蹲消耗热量0.8大卡;(2)嘉嘉至少要做25个波比跳.【分析】(1)设每个波比跳消耗热量x大卡,每个深蹲消耗热量y大卡,根据“完成第一组运动,嘉嘉做了20个解析:(1)每个波比跳消耗热量5大卡,每个深蹲消耗热量0.8大卡;(2)嘉嘉至少要做25个波比跳.【分析】(1)设每个波比跳消耗热量x大卡,每个深蹲消耗热量y大卡,根据“完成第一组运动,嘉嘉做了20个波比跳和40个深蹲,共消耗热量132大卡;完成第二组运动,嘉嘉做了20个波比跳和70个深蹲,”列出方程组,即可求解;(2)设要做m个波比跳,则要做(120﹣m)个深蹲,根据“只做波比跳和深蹲两个动作,花10分钟,消耗至少200大卡,”列出不等式,即可求解.【详解】解:(1)设每个波比跳消耗热量x大卡,每个深蹲消耗热量y大卡,依题意得:,解得:.答:每个波比跳消耗热量5大卡,每个深蹲消耗热量0.8大卡.(2)设要做m个波比跳,则要做(120﹣m)个深蹲,依题意得:5m+0.8(120﹣m)≥200,解得:m≥24.又∵m为整数,∴m的最小值为25.答:嘉嘉至少要做25个波比跳.【点睛】本题主要考查了二元一次方程组和一元一次不等式的应用,明确题意,准确得到数量关系是解题的关键.23.(1),(2)m=(3)(4)【分析】(1)先对方程变形为x=6-2y,然后可带入数值求解;(2)把已知的x+y=0和方程x+2y-6=0组合成方程组,求解方程组的解,然后代入方程x-2y+解析:(1),(2)m=(3)(4)【分析】(1)先对方程变形为x=6-2y,然后可带入数值求解;(2)把已知的x+y=0和方程x+2y-6=0组合成方程组,求解方程组的解,然后代入方程x-2y+mx+5=0即可求m的值;(3)方程整理后,根据无论m如何变化,二元一次方程组总有一个固定的解,列出方程组,解方程组即可;(4)先把m当做已知求出x、y的值,然后再根据整数解进行判断即可.【详解】(1)(2)解得把代入,解得m=(3)(4)①+②得:解得,∵x恰为整数,m也为整数,∴2+m=1或2+m=-1,解得24.(1)详见解析;(2)∠BAE+∠MCD=90°,理由详见解析;(3)详见解析.【详解】试题分析:(1)先根据CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再解析:(1)详见解析;(2)∠BAE+∠MCD=90°,理由详见解析;(3)详见解析.【详解】试题分析:(1)先根据CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GBT 34286-2017 温室气体 二氧化碳测量 离轴积分腔输出光谱法专题研究报告
- 薪酬税务专员面试题目集
- 客户服务经理面试常见问题及答案参考
- 销售主管笔试题及销售团队管理能力评估含答案
- 厨师长岗位面试与技能测试指南
- 2025年移动健康监测设备开发项目可行性研究报告
- 2025年数字货币技术应用可行性研究报告
- 2025年智能医疗健康监测系统建设可行性研究报告
- 2025年中小企业数字化转型咨询项目可行性研究报告
- 2025年数字化智能锁研发项目可行性研究报告
- 人教精通版(2024)四年级上册英语 Unit 1 Sports Lesson 3 教学设计
- 2025一建《建筑工程管理与实务》案例简答300问
- 广东东莞市劳动合同范本
- 项目可行性研究报告评估咨询管理服务方案投标文件(技术方案)
- 变电安规三种人课件
- 2025广西公需科目考试题库和答案(覆盖99%考题)广西一区两地一园一通道+人工智能时代的机遇
- TCACM1020.103-2019道地药材第103部分广地龙
- 桑日县国土空间规划(2021-2035年)
- 模具寿命管理办法
- 新形态教材管理办法
- 2025年综合类-卫生系统招聘考试-卫生系统招聘考试综合练习历年真题摘选带答案(5套单选100题合辑)
评论
0/150
提交评论