苏教七年级下册期末复习数学真题模拟题目A卷及答案解析_第1页
苏教七年级下册期末复习数学真题模拟题目A卷及答案解析_第2页
苏教七年级下册期末复习数学真题模拟题目A卷及答案解析_第3页
苏教七年级下册期末复习数学真题模拟题目A卷及答案解析_第4页
苏教七年级下册期末复习数学真题模拟题目A卷及答案解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

苏教七年级下册期末复习数学真题模拟题目A卷及答案解析一、选择题1.下列运算正确的是()A.(﹣a2b3)2=a4b6 B.a3•a5=a15C.(﹣a2)3=﹣a5 D.3a2﹣2a2=12.如图,直线EF与直线AB,CD相交.图中所示的各个角中,能看做∠1的内错角的是()A.∠2 B.∠3 C.∠4 D.∠53.不等式2x-7<5-2x的正整数解有()A.1个 B.2个 C.3个 D.4个4.下列乘法运算中不能用平方差公式计算的是()A.(x+1)(x﹣1) B.(x+1)(﹣x+1)C.(﹣x+1)(﹣x﹣1) D.(x+1)(﹣x﹣1)5.如果关于的不等式组的解集为,且关于的方程有正整数解,则所有符合条件的整数的值有几个()A.0个 B.1个 C.2个 D.3个6.给出下列四个命题,其中真命题的个数为()①多边形的外角和小于内角和;②如果ab,那么abab0;③两直线平行,同位角相等;④如果a,b是实数,那么A.1 B.2 C.3 D.47.下列定义一种关于正整数n的“F运算”:①当n是奇数时,;②n为偶数时,结果是(其中F是奇数),并且运算重复进行.例如:取,如图所示,若,则第2020次“F运算”的结果是()A.25 B.20 C.80 D.58.在长方形内,将两张边长分别为和的正方形纸片按如图,如图两种方式放置(如图,如图中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设如图1中阴影部分的面积为,如图2中阴影部分的面积为.当时,的值为()A.0 B. C. D.二、填空题9.计算a3b•6ab2的结果是___.10.下列命题:①相等的角是对顶角;②互补的角就是平角;③互补的两个角一定是一个锐角,另一个钝角;④在同一平面内,平行于同一条直线的两条直线平行;⑤邻补角的平分线互相垂直.其中真命题的序号是______.11.若一个多边形外角和与内角和相等,则这个多边形是_____.12.若,则___________.13.已知方程组的解x,y满足x+y=2,则k的值为_____.14.某景点拟在如图的矩形荷塘上架设小桥,若荷塘中小桥的总长为100米,则荷塘周长为_____.15.已知一个多边形的每一个内角都等于108°,则这个多边形的边数是_____.16.如图,△ABC中,AD为BC边上的中线,E、F分别是AD、CD的中点,连接EF、BE,若△BEF的面积为6,则△ABC的面积是_____.17.计算或化简.(1)(2)(3)18.分解因式:(1)3x2﹣6x.(2)(x2+16y2)2﹣64x2y2.19.解方程组(1);(2).20.定义:如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的“相伴方程”,例如:方程的解为,不等式组的解集为.因为,所以称方程为不等式组,的“相伴方程”.(1)下列方程是不等式组的“相伴方程”的是______;(填序号)①;②;③.(2)若关于的方程是不等式组的“相伴方程”,求的取值范围;(3)若方程,都是关于的不等式组的“相伴方程”,其中,求的取值范围.三、解答题21.如图,已知∠3=∠B,且∠AEF=∠ABC.(1)求证:∠1+∠2=180°;(2)若∠1=60°,∠AEF=2∠FEC,求∠ECB的度数.22.某单位为响应政府号召,准备购买A、B两种型号的分类垃圾桶,购买时发现,A种型号的单价比B种型号的单价少50元,用2000元购买A种垃圾桶的个数与用2200元购买B种垃圾桶的个数相同.(1)求A、B两种型号垃圾桶的单价各是多少元?(2)若单位需要购买分类垃圾桶6个,总费用不超过3100元,求出所有不同的购买方式?23.李师傅要给-块长9米,宽7米的长方形地面铺瓷砖.如图,现有A和B两种款式的瓷砖,且A款正方形瓷砖的边长与B款长方形瓷砖的长相等,B款瓷砖的长大于宽.已知一块A款瓷砖和-块B款瓷砖的价格和为140元;3块A款瓷砖价格和4块B款瓷砖价格相等.请回答以下问题:(1)分别求出每款瓷砖的单价.(2)若李师傅买两种瓷砖共花了1000元,且A款瓷砖的数量比B款多,则两种瓷砖各买了多少块?(3)李师傅打算按如下设计图的规律进行铺瓷砖.若A款瓷砖的用量比B款瓷砖的2倍少14块,且恰好铺满地面,则B款瓷砖的长和宽分别为_米(直接写出答案).24.阅读下列材料并解答问题:在一个三角形中,如果一个内角的度数是另一个内角度数的3倍,那么这样的三角形我们称为“梦想三角形”例如:一个三角形三个内角的度数分别是120°,40°,20°,这个三角形就是一个“梦想三角形”.反之,若一个三角形是“梦想三角形”,那么这个三角形的三个内角中一定有一个内角的度数是另一个内角度数的3倍.(1)如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为__________(2)如图1,已知∠MON=60°,在射线OM上取一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交线段OB于点C(点C不与O、B重合),若∠ACB=80°.判定△AOB、△AOC是否是“梦想三角形”,为什么?(3)如图2,点D在△ABC的边上,连接DC,作∠ADC的平分线交AC于点E,在DC上取一点F,使得∠EFC+∠BDC=180°,∠DEF=∠B.若△BCD是“梦想三角形”,求∠B的度数.25.已知:直线l分别交AB、CD与E、F两点,且AB∥CD.(1)说明:∠1=∠2;(2)如图2,点M、N在AB、CD之间,且在直线l左侧,若∠EMN+∠FNM=260°,①求:∠AEM+∠CFN的度数;②如图3,若EP平分∠AEM,FP平分∠CFN,求∠P的度数;(3)如图4,∠2=80°,点G在射线EB上,点H在AB上方的直线l上,点Q是平面内一点,连接QG、QH,若∠AGQ=18°,∠FHQ=24°,直接写出∠GQH的度数.【参考答案】一、选择题1.A解析:A【分析】根据积的乘方与幂的乘方法则、同底数幂的乘法法则、合并同类项作法进行计算,判断即可.【详解】解:A、(-a2b3)2=a4b6,此选项符合题意;B、a3•a5=a8,此选项不符合题意;C、(-a2)3=-a6,此选项不符合题意;D、3a2-2a2=a2,此选项不符合题意;故选:A.【点睛】本题考查的是积的乘方与幂的乘方、同底数幂的乘法、合并同类项,掌握它们的运算法则是解题的关键.2.B解析:B【分析】两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.根据内错角的边构成“Z”形判断即可.【详解】解:由图可知:能看作∠1的内错角的是∠3,故选:B.【点睛】本题主要考查同位角、内错角、同旁内角的定义,关键是掌握同位角的边构成“F”形,内错角的边构成“Z”形,同旁内角的边构成“U”形.3.B解析:B【分析】先求出不等式的解集,在取值范围内可以找到正整数解.【详解】解:不等式2x-7<5-2x的解集为x<3,正整数解为1,2,共两个.故选:B.【点睛】解答此题要先求出不等式的解集,再确定正整数解.4.D解析:D【分析】根据平方差公式的特点逐个判断即可.【详解】解:选项A:(x+1)(x-1)=x2-1,故选项A可用平方差公式计算,不符合题意,选项B:(x+1)(-x+1)=1-x2,故选项B可用平方差公式计算,不符合题意,选项C:(-x+1)(-x-1)=x2-1,故选项C可用平方差公式计算,不符合题意,选项D:(x+1)(-x-1)=-(x+1)2,故选项D不可用平方差公式计算,符合题意,故选:D.【点睛】此题考查平方差公式,属于基础题,关键是根据平方差公式的形式解答.5.B解析:B【分析】表示出不等式组的解集,由已知解集确定出m的范围,表示出方程的解,由方程的解为正整数,确定出整数m的值即可.【详解】解:不等式组整理得:,由不等式组的解集为x≥1,得到m+4≤1,即m≤-3,方程去分母得:m-1+x=3x-6,解得:,由方程有正整数解,故,且能被2整除,∴m=-3,则符合条件的整数m的值有1个.故选:B.【点睛】此题考查了一元一次不等式组的整数解,熟练掌握不等式组的解法是解本题的关键.6.A解析:A【分析】根据多边形的内角和、不等式的性质、平行线的性质和零指数幂判断即可.【详解】解:①多边形的外角和不一定小于内角和,四边形的内角和等于外角和,原命题是假命题;②如果0>a>b,那么(a+b)(a-b)<0,原命题是假命题;③两直线平行,同位角相等,是真命题;④如果a,b是实数,且a+b≠0,那么(a+b)0=1,原命题是假命题.故选A.【点睛】考查了命题与定理的知识,解题的关键是了解多边形的内角和、不等式的性质、平行线的性质和零指数幂,难度较小.7.B解析:B【分析】分别算出前几次的运算结果,从而得出第三次开始,奇数次为5,偶数次为20,可得结果.【详解】解:第一次:,第二次:,第三次:,第四次:,第五次:,第六次:,可看出第三次开始,奇数次为5,偶数次为20,∴第2020次为20,故选:B.【点睛】本题考查了有理数的混合运算,数字型规律,既渗透了转化思想、分类思想,又蕴涵了次数、结果规律探索问题,检测学生阅读理解、应用能力.8.D解析:D【解析】【分析】利用面积的和差分别表示出S1和S2,然后利用整式的混合运算计算它们的差.【详解】解:∵S1=(AB-a)•a+(CD-b)(AD-a)=(AB-a)•a+(AB-b)(AD-a),S2=AB(AD-a)+(a-b)(AB-a),∴S2-S1=AB(AD-a)+(a-b)(AB-a)-(AB-a)•a-(AB-b)(AD-a)=(AD-a)(AB-AB+b)+(AB-a)(a-b-a)=b•AD-ab-b•AB+ab=b(AD-AB)=3b.故选D.【点睛】本题考查列代数式,整式的混合运算,整体思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.也考查了正方形的性质.二、填空题9.3a4b3【分析】直接利用单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式,进而得出答案.【详解】解:a3b•6ab2=3a4b3.故答案为:3a4b3.【点睛】此题主要考查了单项式乘单项式,正确掌握相关运算法则是解题关键.10.④⑤【分析】根据对顶角,平角,互补,平行公理,角平分线的定义对各小题分析判断后求解.【详解】解:①相等的角是对顶角,错误,因为对顶角既要考虑大小,还要考虑位置;②互补的角就是平角,错误,因为互补的角既要考虑大小,还要考虑位置;③互补的两个角一定是一个为锐角,另一个为钝角,错误,两个直角也可以;④在同一平面内,同平行于一条直线的两条直线平行,是平行公理,正确;⑤邻补角的平分线互相垂直,正确.所以只有④⑤命题正确,故答案为:④⑤.【点睛】本题考查了命题与定理,解决本题的关键是熟记对顶角相等、互为补角的定义、平行线的平行公理.11.四边形.【详解】根据多边形的内角和公式与多边形的外角和定理列出方程,然后解方程即可求出多边形的边数:设这个多边形的边数是n,则(n﹣2)•1800=3600,解得n=4.∴这个多边形是四边形.12.10【分析】利用平方差公式分解因式后化简可求解.【详解】解:∵,∴=故答案为10.【点睛】本题主要考查因式分解的应用,将分子分解因式是解题的关键.13.【分析】把两方程相加,利用整体代入的方法得到,然后解关于k的一次方程即可.【详解】解:,①+②得5x+5y=2k+1,即x+y=,∵x+y=2,∴,解得k=.故答案为:.【点睛】本题考查了二元一次方程组的解,能使方程组中每个方程的左右两边相等的未知数的值即是方程组的解.14.200m【分析】根据图形得出荷塘中小桥的总长为矩形的长与宽的和,进而得出答案.【详解】解:∵荷塘中小桥的总长为100米,∴荷塘周长为:2×100=200(m).故答案为200m.【点睛】本题主要考查了生活中的平移现象,得出荷塘中小桥的总长为矩形的长与宽的和是解题关键.15.5【详解】试题分析:∵多边形的每一个内角都等于108°,∴每一个外角为72°.∵多边形的外角和为360°,∴这个多边形的边数是:360÷÷72=5.解析:5【详解】试题分析:∵多边形的每一个内角都等于108°,∴每一个外角为72°.∵多边形的外角和为360°,∴这个多边形的边数是:360÷÷72=5.16.【分析】连接EC,根据三角形的一条中线把这个三角形分为面积相等的两部分计算即可.【详解】解:连接EC,∵点D是BC的中点,∴△BED的面积=△CED的面积,∵点F是CD的中点,∴△解析:【分析】连接EC,根据三角形的一条中线把这个三角形分为面积相等的两部分计算即可.【详解】解:连接EC,∵点D是BC的中点,∴△BED的面积=△CED的面积,∵点F是CD的中点,∴△DEF的面积=△FEC的面积,∴△BED的面积=2×△DEF的面积,∵△BEF的面积为6,∴△BDE的面积为4,∵点E是AD的中点,∴△BEA的面积=△BDE的面积=4,∴△BDA的面积为8,∵点D是BC的中点,∴△ABC的面积=2△ABD的面积=16,故答案为:16.【点睛】本题考查的是三角形的面积计算,掌握三角形的一条中线把这个三角形分为面积相等的两部分是解题的关键.17.(1);(2);(3)【分析】(1)根据实数的性质化简即可求解;(2)根据幂的运算法则即可求解;(3)根据整式的加减运算法则即可求解.【详解】解:(1);(2)(3)原解析:(1);(2);(3)【分析】(1)根据实数的性质化简即可求解;(2)根据幂的运算法则即可求解;(3)根据整式的加减运算法则即可求解.【详解】解:(1);(2)(3)原式.【点睛】此题主要考查实数与整式的运算,解题的关键是熟知负指数幂的运算法则.18.(1)3x(x﹣2);(2)(x+4y)2(x﹣4y)2.【分析】(1)直接提取公因式3x,进而分解因式得出答案;(2)直接利用平方差公式以及结合完全平方公式分解因式得出答案.【详解】解:解析:(1)3x(x﹣2);(2)(x+4y)2(x﹣4y)2.【分析】(1)直接提取公因式3x,进而分解因式得出答案;(2)直接利用平方差公式以及结合完全平方公式分解因式得出答案.【详解】解:(1)3x2﹣6x=3x(x﹣2);(2)(x2+16y2)2﹣64x2y2=(x2+16y2+8xy)(x2+16y2﹣8xy)=(x+4y)2(x﹣4y)2.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.19.(1);(2)【分析】(1)把①代入②得出2x+2x-3=5,求出x=2,再把x=2代入①求出y即可;(2)①+②×2得出13x=39,求出x,再把x=3代入①求出y即可.【详解】解:(1解析:(1);(2)【分析】(1)把①代入②得出2x+2x-3=5,求出x=2,再把x=2代入①求出y即可;(2)①+②×2得出13x=39,求出x,再把x=3代入①求出y即可.【详解】解:(1),把①代入②,得2x+2x-3=5,解得:x=2,把x=2代入①,得y=2×2-3=1,所以方程组的解是;(2),①+②×2,得13x=39,解得:x=3,把x=3代入①,得9+4y=5,解得:y=-1,所以方程组的解是.【点睛】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.20.(1)①②;(2)取值范围为;(3)的取值范围为.【分析】(1)先求出不等式和每个方程的解,然后根据“相伴方程”的定义进行判断即可;(2)先求出不等式的解集,然后把k当做常数,求出方程的解,然解析:(1)①②;(2)取值范围为;(3)的取值范围为.【分析】(1)先求出不等式和每个方程的解,然后根据“相伴方程”的定义进行判断即可;(2)先求出不等式的解集,然后把k当做常数,求出方程的解,然后代入不等式组的解集中求解即可;(3)分别求出方程的解和不等式组的解集,然后根据“相伴方程”的定义求解即可.【详解】解:(1)解不等式,得,∴不等式的解集为,解方程①得;解方程②得解方程③得∴“相伴方程”是①②;(2)∵不等式组为解得,∵方程为,解得,根据题意可得,,解得:,故取值范围为.(3)∵方程为,,解得:,.∵不等式组为当时,不等式组为此时不等式组解集为,不符合题意,舍;当时,不等式组解集为,∴根据题意可得解得,故的取值范围为.【点睛】本题主要考查了解一元一次方程和一元一次不等式组,解题的关键在于能够熟练掌握相关知识进行求解.三、解答题21.(1)见解析;(2)20°【分析】(1)根据平行线的判定与性质即可证明;(2)结合(1)和已知条件,利用平行线的判定与性质即可求出结果.【详解】(1)证明:∵∠3=∠B,∠AEF=∠ABC解析:(1)见解析;(2)20°【分析】(1)根据平行线的判定与性质即可证明;(2)结合(1)和已知条件,利用平行线的判定与性质即可求出结果.【详解】(1)证明:∵∠3=∠B,∠AEF=∠ABC,∴∠3=∠AEF,∴ABFD,∴∠2=∠FDE,∵∠1+∠FDE=180°,∴∠1+∠2=180°;(2)解:∵∠1+∠2=180°,∠1=60°,∴∠2=180°﹣60°=120°,∵∠AEF=2∠FEC,∠AEF+∠FEC+∠2=180°,∴3∠FEC+120°=180°,∴∠FEC=20°,∵∠AEF=∠ABC,∴EFBC,∴∠CEF=∠ECB,∴∠ECB=20°.【点睛】本题综合考查平行线的判定与性质,等式的性质,角的和差等相关知识点,重点掌握平行线的判定与性质,混淆点学生在书写时易将平行线的判定与性质写错.22.(1)、两种型号垃圾桶的单价是500元和550元;(2)购买A种型号垃圾桶为4个,B种型号垃圾桶为2个;A种型号垃圾桶为5个,B种型号垃圾桶为1个;A种型号垃圾桶为6个,B种型号垃圾桶为0个.【分解析:(1)、两种型号垃圾桶的单价是500元和550元;(2)购买A种型号垃圾桶为4个,B种型号垃圾桶为2个;A种型号垃圾桶为5个,B种型号垃圾桶为1个;A种型号垃圾桶为6个,B种型号垃圾桶为0个.【分析】(1)设、两种型号垃圾桶的单价分别为元,元,由题意列方程,求出的值即为种型号垃圾桶的单价,再由求出种型号垃圾桶的单价.(2)设购买A种型号垃圾桶个,则由题意,列式,解出的范围,分类讨论即可.【详解】(1)设、两种型号垃圾桶的单价分别为元,元,由题意列方程:解得:经检验知:是原方程的解,符合题意∴即、两种型号垃圾桶的单价是500元和550元.(2)设购买A种型号垃圾桶为个,则:解得:,又∵单位需要购买分类垃圾桶6个∵且为整数,∴所以购买A种型号垃圾桶为4个,B种型号垃圾桶为个;A种型号垃圾桶为5个,B种型号垃圾桶为个;A种型号垃圾桶为6个,B种型号垃圾桶为.综上所述,共有三种购买方式,即购买A种型号垃圾桶为4个,B种型号垃圾桶为2个;A种型号垃圾桶为5个,B种型号垃圾桶为1个;A种型号垃圾桶为6个,B种型号垃圾桶为0个.【点睛】本题考查分式方程的应用,以及一元一次不等式的应用,根据相关知识点列出关系式是解题关键.23.(1)A款瓷砖单价为80元,B款单价为60元.(2)买了11块A款瓷砖,2块B款;或8块A款瓷砖,6块B款.(3)B款瓷砖的长和宽分别为1,或1,.【分析】(1)设A款瓷砖单价x元,B款单价y元解析:(1)A款瓷砖单价为80元,B款单价为60元.(2)买了11块A款瓷砖,2块B款;或8块A款瓷砖,6块B款.(3)B款瓷砖的长和宽分别为1,或1,.【分析】(1)设A款瓷砖单价x元,B款单价y元,根据“一块A款瓷砖和一块B款瓷砖的价格和为140元;3块A款瓷砖价格和4块B款瓷砖价格相等”列出二元一次方程组,求解即可;(2)设A款买了m块,B款买了n块,且m>n,根据共花1000元列出二元一次方程,求出符合题意的整数解即可;(3)设A款正方形瓷砖边长为a米,B款长为a米,宽b米,根据图形以及“A款瓷砖的用量比B款瓷砖的2倍少14块”可列出方程求出a的值,然后由是正整教分情况求出b的值.【详解】解:(1)设A款瓷砖单价x元,B款单价y元,则有,解得,答:A款瓷砖单价为80元,B款单价为60元;(2)设A款买了m块,B款买了n块,且m>n,则80m+60n=1000,即4m+3n=50∵m,n为正整数,且m>n∴m=11时n=2;m=8时,n=6,答:买了11块A款瓷砖,2块B款瓷砖或8块A款瓷砖,6块B款瓷砖;(3)设A款正方形瓷砖边长为a米,B款长为a米,宽b米.由题意得:,解得a=1.由题可知,是正整教.设(k为正整数),变形得到,当k=1时,,故合去),当k=2时,,故舍去),当k=3时,,当k=4时,,答:B款瓷砖的长和宽分别为1,或1,.【点睛】本题主要考查了二元一次方程组的实际应用,(1)(2)较为简单,(3)中利用数形结合的思想,找出其中两款瓷砖的数量与图形之间的规律是解题的关键.24.(1)36°或18°;(2)△AOB、△AOC都是“梦想三角形”,证明详见解析;(3)∠B=36°或∠B=.【分析】(1)根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°,解析:(1)36°或18°;(2)△AOB、△AOC都是“梦想三角形”,证明详见解析;(3)∠B=36°或∠B=.【分析】(1)根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°,可得另两个角的和为72°,由三角形中一个内角是另一个内角的3倍时,可以分别求得最小角为180°﹣108°﹣108÷3°=36°,72°÷(1+3)=18°,由此比较得出答案即可;(2)根据垂直的定义、三角形内角和定理求出∠ABO、∠OAC的度数,根据“梦想三角形”的定义判断即可;(3)根据同角的补角相等得到∠EFC=∠ADC,根据平行线的性质得到∠DEF=∠ADE,推出DE∥BC,得到∠CDE=∠BCD,根据角平分线的定义得到∠ADE=∠CDE,求得∠B=∠BCD,根据“梦想三角形”的定义求解即可.【详解】解:当108°的角是另

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论