永州市七年级数学试卷七年级苏科下册期末复习题(及答案)_第1页
永州市七年级数学试卷七年级苏科下册期末复习题(及答案)_第2页
永州市七年级数学试卷七年级苏科下册期末复习题(及答案)_第3页
永州市七年级数学试卷七年级苏科下册期末复习题(及答案)_第4页
永州市七年级数学试卷七年级苏科下册期末复习题(及答案)_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

永州市七年级数学试卷七年级苏科下册期末复习题(及答案)一、幂的运算易错压轴解答题1.

(1)你发现了吗?,,由上述计算,我们发;________(2)请你通过计算,判断与之间的关系;(3)我们可以发现:________(4)利用以上的发现计算:.2.计算:(1)=________.(2)=________.3.综合题

(1)填空:21﹣20=2(________),22﹣21=2(________),23﹣22=2(________)…(2)探索(1)中式子的规律,试写出第n个等式,并说明第n个等式成立;(3)运用上述规律计算:20﹣21﹣22﹣…﹣22017+22018。二、平面图形的认识(二)压轴解答题4.如图,在△ABC中,BC=7,高线AD、BE相交于点O,且AE=BE.(1)∠ACB与∠AOB的数量关系是________(2)试说明:△AEO≌△BEC;(3)点F是直线AC上的一点且CF=BO,动点P从点O出发,沿线段OA以每秒1个单位长度的速度向终点A运动,动点Q从点B出发沿射线BC以每秒4个单位长度的速度运动,P、Q两点同时出发,当点P到达A点时,P、Q两点同时停止运动。设点P的运动时间为t秒,问是否存在t值,使以点B、O、P为顶点的三角形与以点F、C、Q为顶点的三角形全等?若存在,请在备用图中画出大致示意图,并直接写出符合条件的t值:若不存在,请说明理由.5.如图,现有一块含有30°的直角三角板ABC,且l1∥l2,其中∠ABC=30°。(1)如图(1),当直线l1和l2分别过三角板ABC的两个顶点时,且∠1=35°,则∠2=________°(2)如图(2),当∠ADE=80°时,求∠GFB的度数。(3)如图(3),点Q是线段CD上的一点,当∠QFC=2∠CFN时,请判断∠ADE和∠QFG的数量关系,并说出理由。6.将一副三角板中的两块直角三角尺的直角顶点按如图所示的方式叠放在一起(其中,,),固定三角板,另一三角板的边从边开始绕点顺时针旋转,设旋转的角度为.

(1)当时;若,则的度数为________;(2)若,求的度数;(3)由(1)(2)猜想与的数量关系,并说明理由;(4)当时,这两块三角尺是否存在一组边互相垂直?若存在,请直接写出所有可能的值,并指出哪两边互相垂直(不必说明理由);若不存在,请说明理由.三、整式乘法与因式分解易错压轴解答题7.上数学课时,王老师在讲完乘法公式(a±b)2=a2±2ab+b2的多种运用后,要求同学们运用所学知识解答:求代数式x2+4x+5的最小值?同学们经过交流、讨论,最后总结出如下解答方法:解:x2+4x+5=x2+4x+4+1=(x+2)2+1∵(x+2)2≥0∴当x=-2时,(x+2)2的值最小,最小值是0,∴(x+2)2+1≥1∴当(x+2)2=0时,(x+2)2+1的值最小,最小值是1,∴x2+4x+5的最小值是1.请你根据上述方法,解答下列各题(1)知识再现:当x=________时,代数式x2-6x+12的最小值是________;(2)知识运用:若y=-x2+2x-3,当x=________时,y有最________值(填“大”或“小”)(3)知识拓展:若-x2+3x+y+5=0,求y+x的最小值8.已知A=2a-7,B=a2-4a+3,C=a2+6a-28,其中.(1)求证:B-A>0,并指出A与B的大小关系;(2)阅读对B因式分解的方法:解:B=a2-4a+3=a2-4a+4-1=(a-2)2-1=(a-2+1)(a-2-1)=(a-1)(a-3).请完成下面的两个问题:①仿照上述方法分解因式:x2-4x-96;②指出A与C哪个大?并说明你的理由.9.现有若干张如图1所示的正方形纸片A,B和长方形纸片C.(1)小王利用这些纸片拼成了如图2的一个新正方形,通过用两种不同的方法计算新正方形面积,由此,他得到了一个等式:________;(2)小王再取其中的若干张纸片(三种纸片都要取到)拼成一个面积为a2+3ab+nb2的长方形,则n可取的正整数值是________,并请你在图3位置画出拼成的长方形________;(3)根据拼图经验,请将多项式a2+5ab+4b2分解因式.四、二元一次方程组易错压轴解答题10.某商场经销A,B两款商品,若买20件A商品和10件B商品用了360元;买30件A商品和5件B商品用了500元.(1)求A、B两款商品的单价;(2)若对A、B两款商品按相同折扣进行销售,某顾客发现用640元购买A商品的数量比用224元购买B商品的数量少20件,求对A、B两款商品进行了几折销售?(3)若对A商品进行5折销售,B商品进行8折销售,某顾客同时购买A、B两种商品若干件,正好用完49.6元,问该顾客同时购买A、B两款商品各几件?11.在平面直角坐标系中,对于点,若点的坐标为,则称点是点的“演化点”.例如,点的“演化点”为,即.(1)已知点的“演化点”是,则的坐标为________;(2)已知点,且点的“演化点”是,则的面积为________;(3)己知,,,,且点的“演化点”为,当时,________.12.某集团购买了150吨物资打算运往某地支援,现有甲、乙、丙三种车型供选择,每辆汽车的运载能力和运费如下表所示:(假设每辆车均满载)车型甲乙丙汽车运载量(吨/辆)5810汽车运费(元/辆)100012001500(1)若全部物资都用甲、乙两种车型来运送,需运费24000元,问分别需甲、乙两种车型各多少辆?(2)若该集团决定用甲、乙、丙三种汽车共18辆同时参与运送,请你写出可能的运送方案,并帮助该集团找出运费最省的方案(甲、乙、丙三种车辆均要参与运送).五、一元一次不等式易错压轴解答题13.阅读理解:定义:若一元一次方程的解在一元一次不等式组解集范围内,则称该一元一次方程为该不等式组的“子方程”.例如:的解为,的解集为,不难发现在的范围内,所以是的“子方程”.问题解决:(1)在方程①,②,③中,不等式组的“子方程”是________;(填序号)(2)若关于x的方程是不等式组的“子方程”,求k的取值范围;(3)若方程,都是关于x的不等式组的“子方程”,直接写出m的取值范围.14.对非负实数x“四舍五入”到个位的值记作<x>,即:当n为非负整数时,若n-≤x<n+,则<x>=n.如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,….(1)填空:①<π>=________;②如果<2x-1>=3,则实数x的取值范围为________;(2)举例说明<x+y>=<x>+<y>不恒成立;(3)求满足<x>=x的所有非负实数x的值.15.我们用表示不大于的最大整数,例如:,,;用表示大于的最小整数,例如:,,.解决下列问题:(1)________,________.(2)若,则的取值范围是________;若,则的取值范围是________.(3)已知,满足方程组,求,的取值范围.【参考答案】***试卷处理标记,请不要删除一、幂的运算易错压轴解答题1.(1)=(2)解:计算得(54)3=12564,(45)-3=12564∴(54)3=(45)-3(3)=(4)解:利用以上的发现计算:=【解析】解析:(1)=(2)解:计算得,∴(3)=(4)解:利用以上的发现计算:=【解析】【分析】(1)类比题干中乘方的运算即可得;(2)类比题干中分数的乘方计算方法计算后即可得;(3)根据(1)、(2)的规律即可得;(4)逆用积的乘方将原式变形为=,再利用同底数幂进行计算可得2.(1)(x-y)5(2)【解析】【解答】(1)原式==;(2)原式==.故答案为:.【分析】(1)根据同底幂相乘,底数不变,指数相加计算即可;(2)将多解析:(1)(2)【解析】【解答】(1)原式==;(2)原式==.故答案为:.【分析】(1)根据同底幂相乘,底数不变,指数相加计算即可;(2)将多项式的每一项分别除以2x2即可.3.(1)0;1;2(2)解:2n-2n-1=2n-1(21-20)=2n-1(3)解:原式=20﹣(21+22+…+22017)+22018设

:S=21+22+…+22017,则2S=22解析:(1)0;1;2(2)解:2n-2n-1=2n-1(21-20)=2n-1(3)解:原式=20﹣(21+22+…+22017)+22018设

:S=21+22+…+22017,则2S=22+23…+22018S=2S-S=22+23…+22018-(21+22+…+22017)=22018-21∴原式=20-22018+21+22018=3【解析】【分析】(1)利用同底数幂的乘法法则的逆用及乘法分配律的逆用即可得出答案;(2)通过观察,每一个减法算式的被减数及减数都是幂的形式,底数都是2,被减数的指数与式子的序号一致,减数的指数比被减数的指数小1;计算的结果也是幂的形式,底数是2,指数比序号小1,利用发现的规律即可得出答案;(3)首先将原式变形为20﹣(21+22+…+22017)+22018,然后设

:S=21+22+…+22017,则2S=22+23…+22018,S=2S-S=22+23…+22018-(21+22+…+22017)=22018-21,再代入原式即可得出答案。二、平面图形的认识(二)压轴解答题4.(1)解:∠ACB+∠AOB=180°(2)解:如图1(原卷没图),∵BE是高,∴∠AEB=∠BEC=90°由(1)得:∠AOB+∠ACB=180°,∵∠AOB+∠AOE=180°,∴∠AOE=∠ACB,在△AEO和△BEC中,∵∴△AEO≌△BEC(AAS)(3)解:存在,如答图2

t=②如答图3

t=注:(3)问解题过程由题意得:OP=t,BQ=4t,∵OB=CF,∠BOP=∠QCF,①当Q在边BC上时,如图2,△BOP≌△FCQ∴OP=CQ,即t=7-4t,t=②当Q在BC延长线上时,如图3,△BOP≌△FCQ,∴OP=CQ,那t=4t-7,t=综上所述,当t=秒或秒时,以点B,O,P为顶点的三角形与以点F,C,Q为顶点的三角形全等。【解析】【分析】(1)在四边形ODEC中,由四边形的内角和,结合题意,可知∠DOE+∠C=180°,由∠EOD和∠AOB为对顶角,所以∠AOB+∠ACB=180°(2)根据题意,由三角形全等的判定定理证明得到答案即可;(3)假设存在t值,使得三角形全等,根据全等三角形的性质逆推,结合三角形全等的性质进行判断即可。5.(1)55(2)解:如图,过点C作l1的平行线交AB于N。∵CN∥l1∴∠1=∠DCN

同理∠2=∠NCF∴∠GFB=∠2=90°-∠1=90°-∠1=90°-∠ADE=10°(3)解:3∠ADE=∠QFG+90°由(2)可知:∠ADE+∠CFN=∠C=90°设∠CFN=x,则∠QFC=2x∴∠ADE=90°-x,∠QFG=180°-3x∴3∠ADE=∠QFG+90°【解析】【解答】(1)∵l1∥l2,∴∠2+∠CAB+∠ABC+∠1=180°,∵∠CAB+∠ABC=90°,∠1=35°∴∠2=55°;【分析】(1)根据两直线平行同旁内角互补,可得∠2+∠CAB+∠ABC+∠1=180°,根据直角三角形的性质可得∠CAB+∠ABC=90°,从而求出∠2的度数;(2)如图,过点C作l1的平行线交AB于N,可得CN∥l1∥l2,从而可得∠1=∠DCN,∠2=∠NCF

,∠GFB=∠2,由∠GFB=∠2=90°-∠1=90°-∠1=90°-∠ADE,据此即可求出结论;(3)结论3∠ADE=∠QFG+90°

.理由:由(2)可知:∠ADE+∠CFN=∠C=90°

,设∠CFN=x,则∠QFC=2x,从而可得∠ADE=90°-x,∠QFG=180°-3x,据此即得结论.6.(1)150°(2)∵∠ACB=130°,∠ACD=90°,∴∠DCB=130°−90°=40°,∴∠DCE=90°−40°=50°;(3)∠ACB+∠DCE=180°,理由如下:①当时,如图1,∵∠ACB=∠ACD+∠DCB=90°+∠DCB,∴∠ACB+∠DCE=90°+∠DCB+∠DCE=90°+90°=180°;②当时,如图2,∠ACB+∠DCE=180°,显然成立;③当时,如图3,∠ACB+∠DCE=360°-90°-90°=180°.综上所述:∠ACB+∠DCE=180°;(4)存在,理由如下:①若AD⊥CE时,如图4,则=90°-∠A=90°-60°=30°,②若AC⊥CE时,如图5,则=∠ACE=90°,③若AD⊥BE时,如图6,则∠EMC=90°+30°=120°,∵∠E=45°,∴∠ECD=180°-45°-120°=15°,∴=90°-15°=75°,④若CD⊥BE时,如图7,则AC∥BE,∴=∠E=45°.综上所述:当=30°时,AD⊥CE,当=90°时,AC⊥CE,当=75°时,AD⊥BE,当=45°时,CD⊥BE.

【解析】【解答】(1)①∵∠ECB=90°,∠DCE=30°,∴∠DCB=90°−30°=60°,∴∠ACB=∠ACD+∠DCB=90°+60°=150°,故答案是150°;【分析】(1)①先根据直角三角板的性质求出∠DCB的度数,进而可得出∠ACB的度数;②由∠ACB=130°,∠ACD=90°,可得出∠DCB的度数,进而得出∠DCE的度数;(2)根据(1)中的结论可提出猜想,再分3种情况:①当时,②当时,③当时,分别证明∠ACB与∠DCE的数量关系,即可;(3)分4种情况:①若AD⊥CE时,②若AC⊥CE时,③若AD⊥BE时,④若CD⊥BE时,分别求出的值,即可.三、整式乘法与因式分解易错压轴解答题7.(1)3;3(2)1;-2(3)解:∵-x2+3x+y+5=0,∴x+y=x2-2x-5=(x-1)2-6,∵(x-1)2≥0∴(x-1)2-6≥-6∴当x=1时,y+x的最小值为解析:(1)3;3(2)1;-2(3)解:∵-x2+3x+y+5=0,∴x+y=x2-2x-5=(x-1)2-6,∵(x-1)2≥0∴(x-1)2-6≥-6∴当x=1时,y+x的最小值为-6.【解析】【解答】解:(1)∵x2-6x+12=(x-3)2+3,∴当x=3时,有最小值3:(2)∵y=-x2+2x-3=-(x-1)2-2,∴当x=1时有最大值-2【分析】(1)把代数式x2-6x+12根据完全平方公式配方,由配方的结果:(x-3)2+3,得(x-3)2≥0,当(x-3)2=0,即x=3时,求得x2-6x+12最小值为3;(2)把y=-x2+2x-3配方,由配方的结果:-(x-1)2-2,得-(x-1)2≤0,则当-(x-1)2=0,即x=1时,y有最大值为-2;(3)首先移项,求出y+x的表达式,再把此表达式配方,根据配方的结果,因为(x-1)2≥0,得出x=1,

y+x有最小值-6即可.8.(1)解:B-A=a2-4a+3-2a+7=a2-6a+10=(a-3)2+1>0,B>A(2)解:①x2-4x-96=x2-4x+4-100=(x-2)2-102=(x-2+1解析:(1)解:B-A=a2-4a+3-2a+7=a2-6a+10=(a-3)2+1>0,B>A(2)解:①x2-4x-96=x2-4x+4-100=(x-2)2-102=(x-2+10)(x-2-10)=(x+8)(x-12);②C-A=a2+6a-28-2a+7=a2+4a-21=(a+7)(a-3).因为a>2,所以a+7>0,从而当2<a<3时,A>C;当a=3时,A=C;当a>3时,A<C【解析】【分析】(1)根据题意B-A=(a-3)2+1>0,得到A与B的大小关系是B>A;(2)根据完全平方公式a2-2ab+b2=(a-b)2和平方差公式a2-b2=(a+b)(a-b),分解即可;由C-A=(a+7)(a-3),再由a>2,得到a+7>0,2<a<3时,A>C;当a=3时,A=C;当a>3时,A<C.9.(1)a2+2ab+b2=(a+b)2(2)2;(3)a2+5ab+4b2=(a+b)(a+4b).【解析】【解答】解:(1)利用面积相等得a2+2ab+b2=(a+b)2;(解析:(1)a2+2ab+b2=(a+b)2(2)2;(3)a2+5ab+4b2=(a+b)(a+4b).【解析】【解答】解:(1)利用面积相等得a2+2ab+b2=(a+b)2;(2)由于有a2+3ab,则a2+3ab+nb2分解为(a+b)(a+2b),因此得到n=2,如图:【分析】(1)利用面积相等易得a2+2ab+b2=(a+b)2;(2)由于有a2+3ab,则a2+3ab+nb2分解为(a+b)(a+2b),因此得到n=2,再画图;(3)利用面积可分解因式.四、二元一次方程组易错压轴解答题10.(1)解:设A商品单价为x元,B商品单价为y元.根据题意,得:{20x+10y=36030x+5y=500解得{x=16y=4所以A商品的单价是16元,B商品的单价是4元.解析:(1)解:设A商品单价为x元,B商品单价为y元.根据题意,得:解得所以A商品的单价是16元,B商品的单价是4元.(2)解:设打折后A、B两款商品进的价格分别为16a和4a,则

解得a=0.8经检验,a=0.8为原方程的解且符合题意所以A、B两款商品进行了8折销售(3)解:设顾客购买A商品m件,B商品n件.则

∵m、n都为正整数∴①m=1,n=13②m=3,n=8③m=5,n=3所以顾客购买A商品1件,B商品13件;或A商品3件,B商品8件;A商品5件,B商品3件.【解析】【分析】(1)设A商品单价为x元,B商品单价为y元,根据题中“买20件A商品和10件B商品用了360元;买30件A商品和5件B商品用了500元”可列出关于x,y的二元一次方程组,求解即可;(2)设打折后A、B两款商品进的价格分别为16a和4a,根据题中“用640元购买A商品的数量比用224元购买B商品的数量少20件”可列出关于a的分式方程,求解即可;(3)设顾客购买A商品m件,B商品n件,根据“同时购买A、B两种商品若干件,正好用完49.6元”可得关于m,n的二元一次方程,由m,n都为正整数讨论其所有可能性即可.11.(1)(2,14)(2)20(3)【解析】【解答】解:(1)由题意可知:点的“演化点”是,即,故答案为:(2,14)(2)设Q点坐标为(x,y),由题意可知:{2解析:(1)(2,14)(2)20(3)【解析】【解答】解:(1)由题意可知:点的“演化点”是,即,故答案为:(2,14)(2)设Q点坐标为(x,y),由题意可知:,解得:∴Q点坐标为(0,4)∴故答案为:20;(3)由题意可知:AD=3,OC=5的坐标为,即点的坐标为当点位于y轴正半轴时,,∴或(此情况不合题意,舍去)又∵∴,解得:(舍去)当点位于y轴正半轴时,,∴又∵∴,解得:,即故答案为:.【分析】(1)根据题意a=3,x=-1,y=5时,求点的坐标;(2)根据题意列方程组求点Q的坐标,然后结合坐标系中点的位置,利用割补法求三角形面积;(3)根据题意求出,然后分点在y轴正半轴和负半轴两种情况讨论,利用三角形面积列方程求解.12.(1)解:设需甲种车型x辆,乙种车型y辆由题意得:{5x+8y=1501000x+1200y=24000解得:{x=6y=15答:需甲种车型6辆,乙种车型15辆(2)解:设需解析:(1)解:设需甲种车型x辆,乙种车型y辆由题意得:解得:答:需甲种车型6辆,乙种车型15辆(2)解:设需甲种车型a辆,乙种车型b辆,其中a、b为正整数,则需丙种车型辆由题意得:整理得:,即均为正整数或①当时,,则总运费为(元)②当时,,则总运费为(元)综上,可能的运送方案有两种:方案一,需甲种车型4辆,乙种车型5辆,丙种车型9辆;方案二,需甲种车型2辆,乙种车型10辆,丙种车型6辆.方案二的运费最省,运费为23000元.【解析】【分析】(1)设需甲种车型x辆,乙种车型y辆,然后根据物资总重量和总运费建立方程组,求解即可得;(2)设需甲种车型a辆,乙种车型b辆,则需丙种车型辆,再根据总重量得出关于a、b的等式,然后根据正整数性求出a、b的值,最后根据汽车费用表求解即可.五、一元一次不等式易错压轴解答题13.(1)③(2)解:解不等式3x-6>4-x,得:x>52,解不等式x-1≥4x-10,得:x≤3,则不等式组的解集为52<x≤3,解:2x-k=2,得:x=解析:(1)③(2)解:解不等式3x-6>4-x,得:>,解不等式x-1≥4x-10,得:x≤3,则不等式组的解集为<x≤3,解:2x-k=2,得:x=,∴<≤3,<,解得:3<k≤4;(3)解:解方程:2x+4=0得,

解方程:得:,解关于x的不等式组当<时,不等式组为:,此时不等式组的解集为:>,不符合题意,所以:>所以得不等式的解集为:m-5≤x<1,∵2x+4=0,都是关于x的不等式组的“子方程”,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论