版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学苏教七年级下册期末解答题压轴试卷解析一、解答题1.如图,在中,是高,是角平分线,,.()求、和的度数.()若图形发生了变化,已知的两个角度数改为:当,,则__________.当,时,则__________.当,时,则__________.当,时,则__________.()若和的度数改为用字母和来表示,你能找到与和之间的关系吗?请直接写出你发现的结论.2.如图,在中,与的角平分线交于点.(1)若,则;(2)若,则;(3)若,与的角平分线交于点,的平分线与的平分线交于点,,的平分线与的平分线交于点,则.3.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2=°;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为:;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间的关系为:.4.已知在中,,点在上,边在上,在中,边在直线上,;(1)如图1,求的度数;(2)如图2,将沿射线的方向平移,当点在上时,求度数;(3)将在直线上平移,当以为顶点的三角形是直角三角形时,直接写出度数.5.已知,如图1,直线l2⊥l1,垂足为A,点B在A点下方,点C在射线AM上,点B、C不与点A重合,点D在直线11上,点A的右侧,过D作l3⊥l1,点E在直线l3上,点D的下方.(1)l2与l3的位置关系是;(2)如图1,若CE平分∠BCD,且∠BCD=70°,则∠CED=°,∠ADC=°;(3)如图2,若CD⊥BD于D,作∠BCD的角平分线,交BD于F,交AD于G.试说明:∠DGF=∠DFG;(4)如图3,若∠DBE=∠DEB,点C在射线AM上运动,∠BDC的角平分线交EB的延长线于点N,在点C的运动过程中,探索∠N:∠BCD的值是否变化,若变化,请说明理由;若不变化,请直接写出比值.6.在△ABC中,∠ABC=∠ACB,点D在直线BC上(不与B、C重合),点E在直线AC上(不与A、C重合),且∠ADE=∠AED.(1)如图1,若∠ABC=50°,∠AED=80°,则∠CDE=°,此时,=.(2)若点D在BC边上(点B、C除外)运动(如图1),试探究∠BAD与∠CDE的数量关系,并说明理由;(3)若点D在线段BC的延长线上,点E在线段AC的延长线上(如图2),其余条件不变,请直接写出∠BAD与∠CDE的数量关系:.(4)若点D在线段CB的延长线上(如图3),点E在直线AC上,∠BAD=26°,其余条件不变,则∠CDE=(友情提醒:可利用图3画图分析).7.已知:如图1直线、被直线所截,.(1)求证:;(2)如图2,点E在,之间的直线上,P、Q分别在直线、上,连接、,平分,平分,则和之间有什么数量关系,请直接写出你的结论;(3)如图3,在(2)的条件下,过P点作交于点H,连接,若平分,,求的度数.8.如图1,将一副三角板与三角板摆放在一起;如图2,固定三角板,将三角板绕点A按顺时针方向旋转,记旋转角().(1)当________度时,;当________度时;(2)当的一边与的某一边平行(不共线)时,直接写出旋转角的所有可能的度数;(3)当,连接,利用图4探究的度数是否发生变化,并给出你的证明.9.问题1:现有一张△ABC纸片,点D、E分别是△ABC边上两点,若沿直线DE折叠.(1)探究1:如果折成图①的形状,使A点落在CE上,则∠1与∠A的数量关系是;(2)探究2:如果折成图②的形状,猜想∠1+∠2和∠A的数量关系是;(3)探究3:如果折成图③的形状,猜想∠1、∠2和∠A的数量关系,并说明理由.(4)问题2:将问题1推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是.10.已知E、D分别在的边、上,C为平面内一点,、分别是、的平分线.(1)如图1,若点C在上,且,求证:;(2)如图2,若点C在的内部,且,请猜想、、之间的数量关系,并证明;(3)若点C在的外部,且,请根据图3、图4直接写出结果出、、之间的数量关系.【参考答案】一、解答题1.(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当时,;当时,.【分析】(1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数;解析:(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当时,;当时,.【分析】(1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数;(2)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,则前三问利用即可得出答案,第4问利用即可得出答案;(3)按照(2)的方法,将相应的数换成字母即可得出答案.【详解】(1)∵,,∴.∵平分,∴.∵是高,,,,.(2)当,时,∵,,∴.∵平分,∴.∵是高,,,;当,时,∵,,∴.∵平分,∴.∵是高,,,;当,时,∵,,∴.∵平分,∴.∵是高,,,;当,时,∵,,∴.∵平分,∴.∵是高,,,.(3)当时,即时,∵,,∴.∵平分,∴.∵是高,,,;当时,即时,∵,,∴.∵平分,∴.∵是高,,,;综上所述,当时,;当时,.【点睛】本题主要考查三角形内角和定理和三角形的角平分线,高,掌握三角形内角和定理和直角三角形两锐角互余是解题的关键.2.(1)110(2)(90+n)(3)×90°+n°【分析】(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据BO、CO分别是∠ABC与∠ACB的角平解析:(1)110(2)(90+n)(3)×90°+n°【分析】(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据BO、CO分别是∠ABC与∠ACB的角平分线,用n°的代数式表示出∠OBC与∠OCB的和,再根据三角形的内角和定理求出∠BOC的度数;(3)根据规律直接计算即可.【详解】解:(1)∵∠A=40°,∴∠ABC+∠ACB=140°,∵点O是∠AB故答案为:110°;C与∠ACB的角平分线的交点,∴∠OBC+∠OCB=70°,∴∠BOC=110°.(2)∵∠A=n°,∴∠ABC+∠ACB=180°-n°,∵BO、CO分别是∠ABC与∠ACB的角平分线,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB)=(180°﹣n°)=90°﹣n°,∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+n°.故答案为:(90+n);(3)由(2)得∠O=90°+n°,∵∠ABO的平分线与∠ACO的平分线交于点O1,∴∠O1BC=∠ABC,∠O1CB=∠ACB,∴∠O1=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=×180°+n°,同理,∠O2=×180°+n°,∴∠On=×180°+n°,∴∠O2017=×180°+n°,故答案为:×90°+n°.【点睛】本题考查了三角形内角和定理,角平分线定义的应用,注意:三角形的内角和等于180°.3.(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由见解析;(4)∠2=90°+∠1﹣α.【详解】试题分析:(1)根据四边形内角和定理以及邻补角的定义,得出∠1+∠2解析:(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由见解析;(4)∠2=90°+∠1﹣α.【详解】试题分析:(1)根据四边形内角和定理以及邻补角的定义,得出∠1+∠2=∠C+∠α,进而得出即可;(2)利用(1)中所求的结论得出∠α、∠1、∠2之间的关系即可;(3)利用三角外角的性质,得出∠1=∠C+∠2+α=90°+∠2+α;(4)利用三角形内角和定理以及邻补角的性质可得出∠α、∠1、∠2之间的关系.试题分析:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+∠α,∵∠C=90°,∠α=50°,∴∠1+∠2=140°,故答案为140;(2)由(1)得∠α+∠C=∠1+∠2,∴∠1+∠2=90°+∠α.故答案为∠1+∠2=90°+∠α.(3)∠1=90°+∠2+∠α.理由如下:如图③,设DP与BE的交点为M,∵∠2+∠α=∠DME,∠DME+∠C=∠1,∴∠1=∠C+∠2+∠α=90°+∠2+∠α.(4)如图④,设PE与AC的交点为F,∵∠PFD=∠EFC,∴180°-∠PFD=180°-∠EFC,∴∠α+180°-∠1=∠C+180°-∠2,∴∠2=90°+∠1-∠α.故答案为∠2=90°+∠1-∠α点睛:本题考查了三角形内角和定理和外角的性质、对顶角相等的性质,熟练掌握三角形外角的性质是解决问题的关键.4.(1)60°;(2)15°;(3)30°或15°【分析】(1)利用两直线平行,同旁内角互补,得出,即可得出结论;(2)先利用三角形的内角和定理求出,即可得出结论;(3)分和两种情况求解即可得解析:(1)60°;(2)15°;(3)30°或15°【分析】(1)利用两直线平行,同旁内角互补,得出,即可得出结论;(2)先利用三角形的内角和定理求出,即可得出结论;(3)分和两种情况求解即可得出结论.【详解】解:(1),,,,,;(2)由(1)知,,,,,;(3)当时,如图3,由(1)知,,;当时,如图4,,点,重合,,,由(1)知,,,即当以、、为顶点的三角形是直角三角形时,度数为或.【点睛】此题是三角形综合题,主要考查了平行线的性质,三角形的内角和定理,角的和差的计算,求出是解本题的关键.5.(1)互相平行;(2)35,20;(3)见解析;(4)不变,【分析】(1)根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据角平分线的定义和平行解析:(1)互相平行;(2)35,20;(3)见解析;(4)不变,【分析】(1)根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据角平分线的定义和平行线的性质即可得到结论;(4)根据角平分线的定义,平行线的性质,三角形外角的性质即可得到结论.【详解】解:(1)直线l2⊥l1,l3⊥l1,∴l2∥l3,即l2与l3的位置关系是互相平行,故答案为:互相平行;(2)∵CE平分∠BCD,∴∠BCE=∠DCE=BCD,∵∠BCD=70°,∴∠DCE=35°,∵l2∥l3,∴∠CED=∠DCE=35°,∵l2⊥l1,∴∠CAD=90°,∴∠ADC=90°﹣70°=20°;故答案为:35,20;(3)∵CF平分∠BCD,∴∠BCF=∠DCF,∵l2⊥l1,∴∠CAD=90°,∴∠BCF+∠AGC=90°,∵CD⊥BD,∴∠DCF+∠CFD=90°,∴∠AGC=∠CFD,∵∠AGC=∠DGF,∴∠DGF=∠DFG;(4)∠N:∠BCD的值不会变化,等于;理由如下:∵l2∥l3,∴∠BED=∠EBH,∵∠DBE=∠DEB,∴∠DBE=∠EBH,∴∠DBH=2∠DBE,∵∠BCD+∠BDC=∠DBH,∴∠BCD+∠BDC=2∠DBE,∵∠N+∠BDN=∠DBE,∴∠BCD+∠BDC=2∠N+2∠BDN,∵DN平分∠BDC,∴∠BDC=2∠BDN,∴∠BCD=2∠N,∴∠N:∠BCD=.【点睛】本题考查了三角形的综合题,三角形的内角和定理,三角形外角的性质,平行线的判定和性质,角平分线的定义,正确的识别图形进行推理是解题的关键.6.(1)30,2;(2)∠BAD=2∠CDE,理由见解析;(3)∠BAD=2∠CDE;(4)77°或13°.【分析】(1)利用三角形内角和定理以及三角形的外角的性质解决问题即可;(2)结论:∠B解析:(1)30,2;(2)∠BAD=2∠CDE,理由见解析;(3)∠BAD=2∠CDE;(4)77°或13°.【分析】(1)利用三角形内角和定理以及三角形的外角的性质解决问题即可;(2)结论:∠BAD=2∠CDE.设∠B=∠C=x,∠AED=∠ADE=y,则∠BAC=180°-2x,∠CDE=yx,∠DAE=180°-2y,推出∠BAD=∠BAC-∠DAE=2y-2x=2(y-x),由此可得结论.(3)如图②中,结论:∠BAD=2∠CDE.解决方法类似(2).(4)分两种情形:①当点E在CA的延长线上,设∠ABC=∠C=x,∠AED=∠ADE=y,则∠BAC=180°-2x,∠CDE=180°-(y+x),∠DAE=180°-2y,由题意,∠BAD=180°-∠BAC-∠DAE=2x+2y-180°=22°,推出x+y=101°,可得结论.②如图④中,当点E在AC的延长线上时,同法可求.【详解】解:(1)如图①中,∵∠ABC=∠ACB=50°,∴∠BAC=180°﹣50°﹣50°=80°,∵∠AED=∠CDE+∠C,∴∠CDE=80°﹣50°=30°,∵∠ADE=∠AED=80°,∴∠DAE=180°﹣80°﹣80°=20°,∴∠BAD=∠BAC﹣∠DAE=80°﹣20°=60°,∴=2.故答案为30,2;(2)结论:∠BAD=2∠CDE.理由:设∠B=∠C=x,∠AED=∠ADE=y,则∠BAC=180°﹣2x,∠CDE=y﹣x,∠DAE=180°﹣2y,∴∠BAD=∠BAC﹣∠DAE=2y﹣2x=2(y﹣x),∴∠BAD=2∠CDE;(3)如图②中,结论:∠BAD=2∠CDE.理由:设∠B=∠ACB=x,∠AED=∠ADE=y,则∠BAC=180°﹣2x,∠CDE=180°﹣(y+x),∠DAE=180°﹣2y,∴∠BAD=∠BAC+∠DAE=360°﹣2(x+y),∴∠BAD=2∠CDE.故答案为:∠BAD=2∠CDE;(4)如图③中,设∠ABC=∠C=x,∠AED=∠ADE=y,则∠BAC=180°﹣2x,∠CDE=180°﹣(y+x),∠DAE=180°﹣2y,∴∠BAD=180°﹣∠BAC﹣∠DAE=2x+2y﹣180°=26°,∴x+y=103°∴∠CDE=180°﹣103°=77°.如图④中,当点E在AC的延长线上时,设∠ABC=∠ACB=x,∠AED=∠ADE=y,则∠ADB=x﹣26°,∠CDE=y﹣(x﹣26°),∵∠ACB=∠CDE+∠AED,∴x=y+y﹣(x﹣26°),∴x﹣y=13°,∴∠CDE=x﹣y=13°故答案为:77°或13°.【点睛】本题属于几何变换综合题,考查了等腰三角形的性质,三角形内角和定理,三角形的外角的性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.7.(1)证明见解析;(2),理由见解析;(3).【分析】(1)只需要证明即可证明;(2)作.由平行线的性质即可证明,同理可证明,由此再根据角平分线的定义和平角的性质可得;(3)设,.,则,想办解析:(1)证明见解析;(2),理由见解析;(3).【分析】(1)只需要证明即可证明;(2)作.由平行线的性质即可证明,同理可证明,由此再根据角平分线的定义和平角的性质可得;(3)设,.,则,想办法构建方程即可解决问题;【详解】解:(1)如图1中,,,,.(2)结论:如图2中,.理由:作.,,,,,,,同理可证:,∵平分,平分,,,∵,,;(3)设,.,∵,∴,∵,∴,,,,平分,,,平分,,,,,,.【点睛】本题考查平行线的判定和性质,角平分线的定义等知识,(2)中能正确作出辅助线是解题关键;(3)中能熟练掌握相关性质,找到角度之间的关系是解题关键.8.(1)105,15;(2)旋转角的所有可能的度数是:15°,45°,105°,135°,150°;(3),保持不变;见解析【分析】(1)三角板ADE顺时针旋转后的三角板为,当时,,则可求得旋转角解析:(1)105,15;(2)旋转角的所有可能的度数是:15°,45°,105°,135°,150°;(3),保持不变;见解析【分析】(1)三角板ADE顺时针旋转后的三角板为,当时,,则可求得旋转角度;当∥BC时,,则可求得旋转角度;(2)分五种情况考虑:AD∥BC,DE∥AB,DE∥BC,DE∥AC,AE∥BC,即可分别求出旋转角;(3)设BD分别交、于点M、N,利用三角形的内外角的相等关系分别得出:及,由的内角和为180°,即可得出结论.【详解】(1)三角板ADE顺时针旋转后的三角板为,当时,如图,∵,∠EAD=45°∴即旋转角当时,如图,则∴=45°-30°=15°即旋转角°故答案为:105,15(2)当的一边与的某一边平行(不共线)时,有五种情况当AD∥BC时,由(1)知旋转角为15°;如图(1),当DE∥AB时,旋转角为45°;当DE∥BC时,由AD⊥DE,则有AD⊥BC,此时由(1)知,旋转角为105°;如图(2),当DE∥AC时,则旋转角为135°;如图(3),当AE∥BC时,则旋转角为150°;所以旋转角的所有可能的度数是:15°,45°,105°,135°,150°(3)当,,保持不变;理由如下:设BD分别交、于点M、N,如图在中,,,【点睛】本题考查了图形旋转的性质,三角形内角和定理,三角形的外角与不相邻的两个内角的相等关系等知识,注意旋转的三要素:旋转中心,旋转方向和旋转角度.9.(1);(2);(3)见解析;(4)【分析】(1)根据三角形外角性质可得;(2)在四边形中,内角和为360°,∠BDA=∠CEA=180°,利用这两个条件,进行角度转化可得关系式;(3)如下解析:(1);(2);(3)见解析;(4)【分析】(1)根据三角形外角性质可得;(2)在四边形中,内角和为360°,∠BDA=∠CEA=180°,利用这两个条件,进行角度转化可得关系式;(3)如下图,根据(1)可得∠1=2∠,∠2=2∠,从而推导出关系式;(4)根据平角的定义以及四边形的内角和定理,与(2)类似思路探讨,可得关系式.【详解】(1)∵△是△EDA折叠得到∴∠A=∠∵∠1是△的外角∴∠1=∠A+∠∴;(2)∵在四边形中,内角和为360°∴∠A++∠∠=360°同理,∠A=∠∴2∠A+∠∠=360°∵∠BDA=∠CEA=180∴∠1+∠∠+∠2=360°∴;(3)数量关系:理由:如下图,连接由(1)可知:∠1=2∠,∠2=2∠∴;(4)由折叠性质知:∠2=180°-2∠AEF,∠1=180°-2∠BFE相加得:.【点睛】本题考查角度之间的关系,(4)问的解题思路是相同的,主要运用三角形的内角和定理和四边形的内角和定理进行角度转换.10.(1)证明见解析;(2)∠CDB+∠AEC=2∠DCE;(3)图3中∠CDB=∠AEC+2∠DCE,图4中∠AEC=∠CDB+2∠DCE.【分析】(1)依据DE、DF分别是∠CDO、∠CDB的平解析:(1)证明见解析;(2)∠CDB+∠AEC=2∠DCE;(3)图3中∠CDB=∠AEC+2∠DCE,图4中∠AEC=∠CDB+2∠DCE.【分析】(1)依据DE、DF分别是∠CDO、∠CDB的平分线,可得∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 常州市溧阳中学高三地理一轮复习流域学案
- 2025年中职播音与主持艺术(播音与主持艺术概论)试题及答案
- 2025-2026年三年级地理(地理信息技术)上学期期中试题及答案
- 2025-2026年高三生物(专项训练)上学期期中测试卷
- 2026年内科护理(疾病护理)考题及答案
- 2026年空少(客舱保障)考题及答案
- 大学(管理学基础)人力资源管理概论2026年综合测试题及答案
- 2025年高职焊接技术与自动化(焊接技术自动化应用)试题及答案
- 2025年中职(机电一体化技术)机械制图阶段测试题及答案
- 2025年高职水文与水资源工程技术(水资源评价)试题及答案
- 2023届河南省郑州市高三第一次质量预测生物试题(解析版)
- 绿色农耕:节能环保农机
- 水运工程自动化监测技术规范
- 初中英语2024届中考词汇(按字母顺序编排)
- 《陆上风电场工程概算定额》NBT 31010-2019
- 纸机安装方案
- 网络道德完整
- 2024-2025高考语文病句汇编及答案解析
- 个体诊所药品清单模板
- 公司年度经营计划书模板
- 教科版(新)科学五年级上册第一单元测试题试卷(含答案)
评论
0/150
提交评论