版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学苏教七年级下册期末复习真题模拟真题(比较难)解析一、选择题1.计算(a4)2的结果是()A.a6 B.a8 C.a16 D.a642.如图,图中的内错角的对数是()A.3对 B.4对 C.5对 D.6对3.若关于x、y的二元一次方程组,的解满足x+y=4,则a的值为()A.0 B.1 C.3 D.24.若,则下列不等式成立的是()A. B. C. D.5.若关于的一元一次不等式组的解集是,则的取值范围是()A. B. C. D.6.下列命题中,可判断为假命题的是()A.在同一平面内,过一点有且只有一条直线与已知直线垂直B.两条直线被第三条直线所截,同位角相等C.同旁内角互补,两直线平行D.直角三角形两个锐角互余7.有依次排列的三个数:6,2,8,先将任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新的数串:6,-4,2,6,8,这称为第一次操作,第二次操作后同样可以产生一个新数串:6,-10,-4,6,2,4,6,2,8,继续操作下去,问:第2021次操作后所产生的新数串的所有数之和是()A.4054 B.4056 C.4058 D.40608.①如图1,AB∥CD,则∠A+∠E+∠C=180°;②如图2,AB∥CD,则∠E=∠A+∠C;③如图3,AB∥CD,则∠A+∠E-∠1=180°;④如图4,AB∥CD,则∠A=∠C+∠P.以上结论正确的个数是()A.、1个 B.2个 C.3个 D.4个二、填空题9.计算:__________________10.命题“全等三角形的对应角相等”的逆命题是_____命题.(填“真”或“假”)11.若某个正多边形的一个内角为,则这个正多边形的内角和为_________.12.若x,y是整数且满足,则__________.13.已知方程组的解是那么的值是__________.14.某宾馆在重新装修后,准备在大厅的主楼梯上铺上红色地毯,已知这种红色地毯的售价为每平方米32元,主楼道宽2米,其侧面与正面如图所示,则购买地毯至少需______元.15.三角形的三边长分别为3、8、x,则x的取值范围是__________.16.如图①,O为直线AB上一点,作射线OC,使,将一块直角三角尺如图摆放,直角顶点在点O处,一条直角边OP在射线OA上,将图①中的三角尺绕点O以每秒的速度按顺时针方向旋转(如图②所示),在旋转一周的过程中,第t秒时,OQ所在直线恰好平分,则t的值为_____________.17.计算下列各式的值.(1)(2)(3)18.将下列各式分解因式(1)(2)(3)(4)19.解方程组(1)(2)20.已知关于x,y的方程组,的解满足x为非正数,y为负数.(1)求m的取值范围;(2)计算|m﹣4|+|m+2|.三、解答题21.填写下列空格完成证明:如图,,求.解:,_______.(理由是:______),._____________.(理由是:_______)_______.(理由是:______),________.22.某共享单车运营公司准备采购一批共享单车投入市场,而共享单车安装公司由于抽调不出足够熟练工人,准备招聘一批新工人.已知1名熟练工人和2名新工人每天共安装28辆共享单车;2名熟练工人每天装的共享单车数与3名新工人每天安装的共享单车数一样多.(1)求每名熟练工人和新工人每天分别可以安装多少辆共享单车?(2)共享单车安装公司原有熟练工a人,现招聘n名新工人(a>n),由于时间紧急,工人们安装的共享单车中不能正常投入运营的占5%,若要求必须在30天内交付运营公司5700辆合格品投入市场,求a、n的所有可能结果.23.为了净化空气,美化校园环境,某学校计划种植,两种树木.已知购买棵种树木和棵种树木共花费元;购买棵种树木和棵种树木共花费元.(1)求,两种树木的单价分别为多少元(2)如果购买种树木有优惠,优惠方案是:购买种树木超过棵时,超出部分可以享受八折优惠.若该学校购买(,且为整数)棵种树木花费元,求与之间的函数关系式.(3)在(2)的条件下,该学校决定在,两种树木中购买其中一种,且数量超过棵,请你帮助该学校判断选择购买哪种树本更省钱.24.操作示例:如图1,在△ABC中,AD为BC边上的中线,△ABD的面积记为S1,△ADC的面积记为S2.则S1=S2.解决问题:在图2中,点D、E分别是边AB、BC的中点,若△BDE的面积为2,则四边形ADEC的面积为.拓展延伸:(1)如图3,在△ABC中,点D在边BC上,且BD=2CD,△ABD的面积记为S1,△ADC的面积记为S2.则S1与S2之间的数量关系为.(2)如图4,在△ABC中,点D、E分别在边AB、AC上,连接BE、CD交于点O,且BO=2EO,CO=DO,若△BOC的面积为3,则四边形ADOE的面积为.25.[原题](1)已知直线,点P为平行线AB,CD之间的一点,如图①,若,BE平分,DE平分,则__________.[探究](2)如图②,,当点P在直线AB的上方时.若,和的平分线相交于点,与的平分线相交于点,与的平分线相交于点……以此类推,求的度数.[变式](3)如图③,,的平分线的反向延长线和的补角的平分线相交于点E,试猜想与的数量关系,并说明理由.【参考答案】一、选择题1.B解析:B【分析】根据幂的乘方公式,直接求解,即可.【详解】解:(a4)2=a8,故选B.【点睛】本题主要考查幂的乘方法则,熟练掌握上述法则,是解题的关键.2.C解析:C【分析】利用内错角的定义分析得出答案.【详解】解:如图所示:内错角有:∠FOP与∠OPE,∠GOP与∠OPD,∠CPA与∠HOP,∠FOP与∠OPD,∠EPO与∠GOP都是内错角,故内错角一共有5对.故选:C.【点睛】此题主要考查了内错角的定义,正确把握内错角的定义是解题关键.3.C解析:C【详解】【分析】先将两个只含有x、y的方程组成二元一次方程组,求出x和y的值,再将其代入第一个方程即可求出a.解:由可得将x,y代入可得2a+2=3a-1a=3故选C4.B解析:B【分析】根据不等式的基本性质分别进行计算,即可得出结论.【详解】解:A.∵,∴,故此选项不符合题意;B.∵,∴,故此选项符合题意;C.∵,∴,∴,故此选项不符合题意;D.∵,∴当,时,,故此选项不符合题意;故选B.【点睛】本题主要考查了不等式的性质,熟练掌握不等式的基本性质并能准确判断不等式的变形过程是解题关键.5.A解析:A【分析】求出第一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了即可确定m的范围.【详解】解:解不等式2x-1>3x+2,得:x<-3,∵不等式组的解集为x<-3,∴m≥-3.故选:A.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.B解析:B【分析】利用直线的位置关系、平行线的性质及直角三角形的性质分别判断后即可确定正确的选项.【详解】A.在同一平面内,过一点有且只有一条直线与已知直线垂直,正确,是真命题;B.两条平行直线被第三条直线所截,同位角相等,故错误,是假命题;C.同旁内角互补,两直线平行,正确,是真命题;D.直角三角形两个锐角互余,正确,是真命题.故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是了解直线的位置关系、平行线的性质及直角三角形的性质,难度不大.7.C解析:C【分析】首先根据题意,分别求出前三次操作得到的数分别是多少,再求出它们的和各是多少;然后总结出第n次操作:求和结果是16+2n,再把n=2021代入,求出算式的值是多少即可.【详解】解:第一次操作:6,-4,2,6,8,求和结果:18,第二次操作:6,-10,-4,6,2,4,6,2,8,求和结果:20,第三次操作:6,-16,-10,6,-4,10,6,-4,2,2,4,2,6,-4,2,6,8,求和结果:22,……第n次操作:求和结果:16+2n,∴第2021次结果为:16+2×2021=4058.故选:C.【点睛】此题主要考查了有理数加减法的运算方法,以及数字的变化规律,要熟练掌握.8.C解析:C【详解】①如图1,过点E作EF∥AB,因为AB∥CD,所以AB∥EF∥CD,所以∠A+∠AEF=180°,∠C+∠CEF=180°,所以∠A+∠AEC+∠C=∠A+∠AEF+∠C+∠CEF=180°+180°=360°,则①错误;②如图2,过点E作EF∥AB,因为AB∥CD,所以AB∥EF∥CD,所以∠A=∠AEF,∠C=∠CEF,所以∠A+∠C=∠AEC+∠AEF=∠AEC,则②正确;③如图3,过点E作EF∥AB,因为AB∥CD,所以AB∥EF∥CD,所以∠A+∠AEF=180°,∠1=∠CEF,所以∠A+∠AEC-∠1=∠A+∠AEC-∠CEF=∠A+∠AEF=180°,则③正确;④如图4,过点P作PF∥AB,因为AB∥CD,所以AB∥PF∥CD,所以∠A=∠APF,∠C=∠CPF,所以∠A=∠CPF+∠APC=∠C+∠APC,则④正确;故选C.二、填空题9.【分析】根据单项式乘以单项式运算法则,系数与系数相乘,相同字母的指数相加即可.【详解】解:,故答案为:.【点睛】题目主要考查单项式乘以单项式的运算法则,熟练掌握运算法则是解题关键.10.假【分析】首先分清题设是:两个三角形全等,结论是:对应角相等,把题设与结论互换即可得到逆命题,然后判断正误即可.【详解】解:“全等三角形的对应角相等”的题设是:两个三角形全等,结论是:对应角相等,因而逆命题是:对应角相等的三角形全等.是一个假命题.故答案为:假.【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.11.540°【分析】通过内角求出外角,利用多边形外角和360度,用360°除以外角度数即可求出这个正多边形的边数即可解答.【详解】解:∵正多边形的每个内角都相等,且为108°,∴其一个外角度数为180°-108°=72°,则这个正多边形的边数为360÷72=5,∴这个正多边形的内角和为108°×5=540°.故答案为:540°.【点睛】本题主要考查了多边形的内角与外角公式,求正多边形的边数时,内角转化为外角,利用外角和360°知识求解更简单.12.25或9或或.【分析】由题意,原式通过整理得到,结合x、y是整数,进行分析讨论,即可求出答案.【详解】解:∵,∴,∴,∴,∵x,y是整数,∴,是整数,∵,∴,,或,,或,,或,,或,,或,,或,,或,;∴,,或,,或,,或,,或,,或,,或,,或,;∴,或,或,或;故答案为:25或9或或.【点睛】本题考查了二元二次方程的解,因式分解的应用,解题的关键是熟练掌握题意,正确得到,从而利用分类讨论进行解题.13.3【分析】把代入方程组中可以得到关于a、b的方程组,解这个方程组即可求解.【详解】解:把代入方程组得关于a、b的方程组,解得:,∴a+b=3,故答案为:3.【点睛】本题考查了二元一次方程组的解,熟练掌握运算法则是解本题的关键.14.512元【分析】根据题意,结合图形,先把楼梯的横竖向上向左平移,构成一个矩形,再求得其面积,则购买地毯的钱数可求.【详解】解:利用平移线段,把楼梯的横竖向上向左平移,构成一个长方形,长宽分别为5米,3米,∴地毯的长度为5+3=8(米),∴地毯的面积为8×2=16(平方米),∴买地毯至少需要16×32=512(元)【点睛】本题考查平移性质的实际运用.解决此题的关键是要利用平移的知识,把要求的所有线段平移到一条直线上进行计算.15.【分析】根据三角形的三边关系定理得出8-3<x<3+8,求出即可.【详解】解:∵三角形的三边长分别为3,x,8,∴8-3<x<3+8,即5<x<11,故答案为:.【点睛】本题考查了解析:【分析】根据三角形的三边关系定理得出8-3<x<3+8,求出即可.【详解】解:∵三角形的三边长分别为3,x,8,∴8-3<x<3+8,即5<x<11,故答案为:.【点睛】本题考查了三角形的三边关系定理,能熟记三角形的三边关系定理的内容是解此题的关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.16.24或60【分析】如图1,如图2,根据平角的定义得到∠BOC=60°,根据角平分线定义得到结论.【详解】解:如图1,∵∠AOC=120°,∴∠BOC=60°,∵OQ平分∠BOC,∴∠B解析:24或60【分析】如图1,如图2,根据平角的定义得到∠BOC=60°,根据角平分线定义得到结论.【详解】解:如图1,∵∠AOC=120°,∴∠BOC=60°,∵OQ平分∠BOC,∴∠BOQ=∠BOC=30°,∴t==24s;如图2,∵∠AOC=120°,∴∠BOC=60°,∵OQ′平分∠BOC,∴∠AOQ=∠BOQ′=∠BOC=30°,∴t==60s,综上所述,OQ所在直线恰好平分∠BOC,则t的值为24s或60s,故答案为:24或60.【点睛】本题考查了角平分线定义,平角的定义,正确的作出图形是解题的关键.17.(1)-17;(2);(3)【分析】(1)先算乘方,零指数幂和负指数幂,再算加减法;(2)利用多项式除以单项式法则计算;(3)先算乘方,再算单项式的乘除法.【详解】解:(1)==-1解析:(1)-17;(2);(3)【分析】(1)先算乘方,零指数幂和负指数幂,再算加减法;(2)利用多项式除以单项式法则计算;(3)先算乘方,再算单项式的乘除法.【详解】解:(1)==-17;(2)=;(3)===【点睛】本题考查了实数的混合运算,整式的混合运算,解题的关键是掌握各自的运算法则.18.(1);(2);(3);(4)【分析】(1)先提取公因式,然后用完全平方公式进行分解即可;(2)先用完全平方公式展开,合并同类项,然后用完全平方公式进行分解即可;(3)原式进行整理先用完全平解析:(1);(2);(3);(4)【分析】(1)先提取公因式,然后用完全平方公式进行分解即可;(2)先用完全平方公式展开,合并同类项,然后用完全平方公式进行分解即可;(3)原式进行整理先用完全平方公式合并,然后再用平方差公式进行因式分解;(4)用十字相乘进行因式分解即可.【详解】解:(1)原式=;(2)原式=;(3)原式=;(4)原式=.故答案为:(1);(2);(3);(4)【点睛】本题考查了用提公因式法,公式法和十字相乘法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.19.(1);(2)【分析】(1)利用代入消元法求解可得;(2)利用加减消元法求解可得.【详解】解:(1),将①代入②,得:,解得:,代入①中,解得:,所以方程组的解为;(2),①+解析:(1);(2)【分析】(1)利用代入消元法求解可得;(2)利用加减消元法求解可得.【详解】解:(1),将①代入②,得:,解得:,代入①中,解得:,所以方程组的解为;(2),①+②×2,得:,解得:,代入②中,解得:,所以方程组的解为.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.(1);(2)【分析】(1)利用加减法解关于、的方程组,根据题意得到,然后解关于的不等式组即可求解;(2)根据(1)的结论进行化简即可求解.【详解】解:(1),①+②,得,∴,①-②解析:(1);(2)【分析】(1)利用加减法解关于、的方程组,根据题意得到,然后解关于的不等式组即可求解;(2)根据(1)的结论进行化简即可求解.【详解】解:(1),①+②,得,∴,①-②,得,∴,为非正数,为负数,,解得;∴的取值范围为.(2),∴,.∴.【点睛】本题考查了解一元一次不等式组和解二元一次方程组,熟练掌握解一元一次不等式组和解二元一次方程组的方法是解决本题的关键.三、解答题21.见解析【分析】此题要注意由EF∥AD,可得∠2=∠3,由等量代换可得∠1=∠3,可得DG∥BA,根据平行线的性质可得∠BAC+∠AGD=180°,即可求解.【详解】解:∵EF=AD,∴∠2解析:见解析【分析】此题要注意由EF∥AD,可得∠2=∠3,由等量代换可得∠1=∠3,可得DG∥BA,根据平行线的性质可得∠BAC+∠AGD=180°,即可求解.【详解】解:∵EF=AD,∴∠2=∠3,(理由是:两直线平行,同位角相等)∵∠1=∠2,∴∠1=∠3,∴DG∥AB(理由是:内错角相等,两直线平行)∴∠BAC+∠AGD=180°(理由是:两直线平行,同旁内角互补)∵∠BAC=70°,∴∠AGD=110°.【点睛】此题考查了平行线的性质与判定,解题时要注意数形结合的应用.22.(1)每名熟练工人每天可以安装12辆共享单车,每名新工人每天可以安装8辆共享单车;(2),,【分析】(1)设每名熟练工人每天可以安装x辆共享单车,每名新工人每天可以安装y辆共享单车,根据“1名熟解析:(1)每名熟练工人每天可以安装12辆共享单车,每名新工人每天可以安装8辆共享单车;(2),,【分析】(1)设每名熟练工人每天可以安装x辆共享单车,每名新工人每天可以安装y辆共享单车,根据“1名熟练工人和2名新工人每天共安装28辆共享单车;2名熟练工人每天装的共享单车数与3名新工人每天安装的共享单车数一样多”列方程组求解即可;(2)根据“在30天内交付运营公司5700辆合格共享单车”得出含有n和a的方程,整理得出n和a的关系,由a>n解得a的范围,再根据n、a均为正整数可得答案.【详解】解:(1)设每名熟练工人每天可以安装x辆共享单车,每名新工人每天可以安装y辆共享单车,根据题意,得:解得,答:每名熟练工人每天可以安装12辆共享单车,每名新工人每天可以安装8辆共享单车;(2)根据题意,得:30×(8n+12a)×(1-5%)=5700,整理,得:,∵a>n,∴,解得a>10,∵n、a均为正整数,∴,,【点睛】本题主要考查二元一次方程组的应用,解题的关键是理解题意,找到题目蕴含的相等关系.23.(1)种树木的单价为80元,种树木的单价为72元;(2);(3)当时,选择购买种树木更省钱;当时,选择购买两种树木的费用相同;当时,选择购买种树木更省钱.【分析】(1)设种树每棵元,种树每棵元,解析:(1)种树木的单价为80元,种树木的单价为72元;(2);(3)当时,选择购买种树木更省钱;当时,选择购买两种树木的费用相同;当时,选择购买种树木更省钱.【分析】(1)设种树每棵元,种树每棵元,根据“购买20棵种树木和15棵种树木共花费2680元;购买10棵种树木和20棵种树木共花费2240元”列出方程组并解答;(2)分,两种情况根据(1)求出的单价即可得与之间的函数关系式;(3)根据种树的单价和(2)求得的函数关系式进行解答即可.【详解】解:(1)设种树木的单价为元,种树木的单价为元.根据题意,得,解得:,答:种树木的单价为80元,种树木的单价为72元;(2)根据题意得,当时,;当时,,与之间的函数关系式为;(3)当时,解得:,即当时,选择购买种树木更省钱;当时,解得:,即当时,选择购买两种树木的费用相同;当时,解得:,即当时,选择购买种树木更省钱.答:当时,选择购买种树木更省钱;当时,选择购买两种树木的费用相同;当时,选择购买种树木更省钱.【点睛】本题考查了一次函数的应用和二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.24.解决问题:6;拓展延伸:(1)S1=2S2(2)10.5【解析】试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,从而得到结论;拓展延伸:(1)解析:解决问题:6;拓展延伸:(1)S1=2S2(2)10.5【解析】试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,从而得到结论;拓展延伸:(1)作△ABD的中线AE,则有BE=ED=DC,从而
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基于注意力机制的超分辨率模型
- 2025年海南省公需课学习-生态环境公益诉讼制度研究1646
- 2025年质量月质量知识竞赛试题集及答案(共80题)
- 2025年营养健康顾问知识竞赛题库及答案(共140题)
- 松林镇小升初试卷及答案
- 内镜护士考证题库及答案
- 维修消防合同范本
- 深圳语文一模试卷及答案
- 2025年护理编制真题分析及答案
- 2025年江苏烟草作文真题及答案
- 旅游导游简易劳动合同
- 在线网课知慧《形势与政策(吉林大学)》单元测试考核答案
- 业主授权租户安装充电桩委托书
- 化工建设综合项目审批作业流程图
- 亲子鉴定的报告单图片
- 辽宁轨道交通职业学院单招《职业技能测试》参考试题库(含答案)
- 新概念二单词表新版,Excel 版
- 2023年陕西西安经济技术开发区招聘120人(共500题含答案解析)笔试必备资料历年高频考点试题摘选
- 第八讲 发展全过程人民民主PPT习概论2023优化版教学课件
- 篇12pmc窗口功能指令举例讲解
- GB/T 7332-2011电子设备用固定电容器第2部分:分规范金属化聚乙烯对苯二甲酸酯膜介质直流固定电容器
评论
0/150
提交评论