版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数列的概念选择题专项训练单元质量专项训练试题一、数列的概念选择题1.数列,,,,…的一个通项公式是()A. B.C. D.答案:C解析:C【分析】根据选项进行逐一验证,可得答案.【详解】选项A.,当时,无意义.所以A不正确.选项B.,当时,,故B不正确.选项C.,,,所以满足.故C正确.选项D.,当时,,故D不正确.故选:C2.设数列的通项公式为,要使它的前项的乘积大于36,则的最小值为()A.6 B.7 C.8 D.9答案:C解析:C【分析】先求出数列的前项的乘积为,令解不等式,结合,即可求解.【详解】记数列的前项的乘积为,则依题意有整理得解得:,因为,所以,故选:C3.已知数列满足则数列的最大项为()A. B. C. D.答案:B解析:B【分析】本题先根据递推公式进行转化得到.然后令,可得出数列是等比数列.即.然后用累乘法可求出数列的通项公式,根据通项公式及二次函数的知识可得数列的最大项.【详解】解:由题意,可知:.令,则.,数列是以为首项,为公比的等比数列...,,.各项相乘,可得:..令,则,根据二次函数的知识,可知:当或时,取得最小值.,,的最小值为..数列的最大项为.故选:.【点睛】本题主要考查根据递推公式得出通项公式,构造新数列的方法,累乘法通项公式的应用,以及利用二次函数思想求最值;4.已知数列的通项公式为(),若为单调递增数列,则实数的取值范围是()A. B. C. D.答案:A解析:A【分析】由已知得,根据为递增数列,所以有,建立关于的不等式,解之可得的取值范围.【详解】由已知得,因为为递增数列,所以有,即恒成立,所以,所以只需,即,所以,故选:A.【点睛】本题考查数列的函数性质:递增性,根据已知得出是解决此类问题的关键,属于基础题.5.删去正整数1,2,3,4,5,…中的所有完全平方数与立方数(如4,8),得到一个新数列,则这个数列的第2020项是()A.2072 B.2073 C.2074 D.2075答案:C解析:C【分析】由于数列共有项,其中有个平方数,12个立方数,有3个既是平方数,又是立方数的数,所以还剩余项,所以去掉平方数和立方数后,第项是在后的第个数,从而求得结果.【详解】∵,,,所以从数列中去掉个平方数,因为,所以从数列中去掉个立方数,又,所以在从数列中有3个数即是平方数,又是立方数的数,重复去掉了3个即是平方数,又是立方数的数,所以从数列中去掉平方数和立方数后还有项,此时距项还差项,所以这个数列的第2020项是,故选:C.【点睛】本题考查学生的实践创新能力,解决该题的关键是找出第项的大概位置,所以只要弄明白在数列去掉哪些项,去掉多少项,问题便迎刃而解,属于中档题.6.在数列中,,,则的值为()A. B. C. D.以上都不对答案:A解析:A【分析】根据递推式可得为一个周期为3的数列,求中一个周期内的项,利用周期性即可求的值【详解】由,知故数列是周期为的数列,而2019可被3整除∴故选:A【点睛】本题主要考查递推数列,考查数列的周期性,考查合情推理,属于基础题7.在数列中,,则等于A. B. C. D.答案:D解析:D【解析】分析:已知逐一求解.详解:已知逐一求解.故选D点睛:对于含有的数列,我们看作摆动数列,往往逐一列举出来观察前面有限项的规律.8.在数列中,已知,,,则等于()A. B. C.4 D.5答案:B解析:B【分析】根据已知递推条件即可求得【详解】由知:故选:B【点睛】本题考查了利用数列的递推关系求项,属于简单题9.已知数列满足,,则()A. B. C. D.答案:C解析:C【分析】根据数列的递推关系,利用取倒数法进行转化,构造等差数列,结合等差数列的性质求出通项公式即可.【详解】解:,两边同时取倒数得,即,即数列是公差的等差数列,首项为.则,得,则,故选:【点睛】本题主要考查数列通项公式的求解,结合数列递推关系,利用取倒数法以及构造法构造等差数列是解决本题的关键.考查学生的运算和转化能力,属于基础题.10.数列的一个通项公式是()A. B. C. D.答案:C解析:C【分析】根据数列项的规律即可得到结论.【详解】因为数列3,7,11,的一个通项公式为,故数列,,,,的一个通项公式是,故选:C.【点睛】本题主要考查数列通项公式的求法,利用条件找到项的规律是解决本题的关键.11.数列的一个通项公式是()A. B. C. D.答案:D解析:D【分析】根据数列分子分母的规律求得通项公式.【详解】由于数列的分母是奇数列,分子是自然数列,故通项公式为.故选:D【点睛】本小题主要考查根据数列的规律求通项公式,属于基础题.12.已知数列的前n项和为,则()A.10 B.8 C.6 D.4答案:D解析:D【分析】根据,代入即可得结果.【详解】.故选:D.【点睛】本题主要考查了由数列的前项和求数列中的项,属于基础题.13.已知数列,则该数列第项是()A. B. C. D.答案:C解析:C【分析】由观察可得项数为,注意到,第项是第个括号里的第项.【详解】由数列,可发现其项数为,则前个括号里共有项,前个括号里共有项,故原数列第项是第个括号里的第项,第个括号里的数列通项为,所以第个括号里的第项是.故选:C.【点睛】本题考查数列的定义,考查学生观察找出已知数列的特征归纳出其项数、通项,是一道中档题.14.在数列中,,,设数列的前项和为,若对一切正整数恒成立,则实数的取值范围为()A. B.C. D.答案:D解析:D【分析】利用累加法求出数列的通项公式,并利用裂项相消法求出,求出的取值范围,进而可得出实数的取值范围.【详解】,且,由累加法可得,,,由于对一切正整数恒成立,,因此,实数的取值范围是.故选:D.【点睛】本题考查数列不等式恒成立问题的求解,同时也考查了累加法求通项以及裂项求和法,考查计算能力,属于中等题.15.已知数列满足:,,设数列的前项和为,则()A.1007 B.1008 C.1009.5 D.1010答案:D解析:D【分析】根据题设条件,可得数列是以3为周期的数列,且,从而求得的值,得到答案.【详解】由题意,数列满足:,,可得,可得数列是以3为周期的数列,且所以.故选:D.【点睛】本题主要考查了数列的递推公式的应用,其中解答中得出数列是以3为周期的数列,是解答的关键,着重考查了推理与运算能力,属于中档试题.二、数列多选题16.已知数列的前4项为2,0,2,0,则该数列的通项公式可能为()A. B.C. D.答案:BD【分析】根据选项求出数列的前项,逐一判断即可.【详解】解:因为数列的前4项为2,0,2,0,选项A:不符合题设;选项B:,符合题设;选项C:,不符合题设;选项D:,符合题设解析:BD【分析】根据选项求出数列的前项,逐一判断即可.【详解】解:因为数列的前4项为2,0,2,0,选项A:不符合题设;选项B:,符合题设;选项C:,不符合题设;选项D:,符合题设.故选:BD.【点睛】本题考查数列的通项公式的问题,考查了基本运算求解能力,属于基础题.17.已知数列满足,,则下列各数是的项的有()A. B. C. D.答案:BD【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论.【详解】因为数列满足,,;;;数列是周期为3的数列,且前3项为,,3;故选:.【点睛】本题主要解析:BD【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论.【详解】因为数列满足,,;;;数列是周期为3的数列,且前3项为,,3;故选:.【点睛】本题主要考查数列递推关系式的应用,考查数列的周期性,解题的关键在于求出数列的规律,属于基础题.18.已知数列的前n项和为,且满足,则下列说法正确的是()A.数列的前n项和为 B.数列的通项公式为C.数列为递增数列 D.数列为递增数列答案:AD【分析】先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求,最后根据和项与通项关系得.【详解】因此数列为以为首项,为公差的等差数列,也是递增数列,即D正确;解析:AD【分析】先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求,最后根据和项与通项关系得.【详解】因此数列为以为首项,为公差的等差数列,也是递增数列,即D正确;所以,即A正确;当时所以,即B,C不正确;故选:AD【点睛】本题考查由和项求通项、等差数列定义与通项公式以及数列单调性,考查基本分析论证与求解能力,属中档题.19.等差数列是递增数列,公差为,前项和为,满足,下列选项正确的是()A. B.C.当时最小 D.时的最小值为答案:BD【分析】由题意可知,由已知条件可得出,可判断出AB选项的正误,求出关于的表达式,利用二次函数的基本性质以及二次不等式可判断出CD选项的正误.【详解】由于等差数列是递增数列,则,A选项错误解析:BD【分析】由题意可知,由已知条件可得出,可判断出AB选项的正误,求出关于的表达式,利用二次函数的基本性质以及二次不等式可判断出CD选项的正误.【详解】由于等差数列是递增数列,则,A选项错误;,则,可得,B选项正确;,当或时,最小,C选项错误;令,可得,解得或.,所以,满足时的最小值为,D选项正确.故选:BD.20.已知递减的等差数列的前项和为,,则()A. B.最大C. D.答案:ABD【分析】转化条件为,进而可得,,再结合等差数列的性质及前n项和公式逐项判断即可得解.【详解】因为,所以,即,因为数列递减,所以,则,,故A正确;所以最大,故B正确;所以,故C错误解析:ABD【分析】转化条件为,进而可得,,再结合等差数列的性质及前n项和公式逐项判断即可得解.【详解】因为,所以,即,因为数列递减,所以,则,,故A正确;所以最大,故B正确;所以,故C错误;所以,故D正确.故选:ABD.21.首项为正数,公差不为0的等差数列,其前项和为,则下列4个命题中正确的有()A.若,则,;B.若,则使的最大的n为15;C.若,,则中最大;D.若,则.答案:ABD【分析】利用等差数列的求和公式及等差数列的性质,逐一检验选项,即可得答案.【详解】对于A:因为正数,公差不为0,且,所以公差,所以,即,根据等差数列的性质可得,又,所以,,故A正解析:ABD【分析】利用等差数列的求和公式及等差数列的性质,逐一检验选项,即可得答案.【详解】对于A:因为正数,公差不为0,且,所以公差,所以,即,根据等差数列的性质可得,又,所以,,故A正确;对于B:因为,则,所以,又,所以,所以,,所以使的最大的n为15,故B正确;对于C:因为,则,,则,即,所以则中最大,故C错误;对于D:因为,则,又,所以,即,故D正确,故选:ABD【点睛】解题的关键是先判断d的正负,再根据等差数列的性质,对求和公式进行变形,求得项的正负,再分析和判断,考查等差数列性质的灵活应用,属中档题.22.记为等差数列前项和,若且,则下列关于数列的描述正确的是()A. B.数列中最大值的项是C.公差 D.数列也是等差数列答案:AB【分析】根据已知条件求得的关系式,然后结合等差数列的有关知识对选项逐一分析,从而确定正确选项.【详解】依题意,等差数列中,即,.对于A选项,,所以A选项正确.对于C选项,,,所以,解析:AB【分析】根据已知条件求得的关系式,然后结合等差数列的有关知识对选项逐一分析,从而确定正确选项.【详解】依题意,等差数列中,即,.对于A选项,,所以A选项正确.对于C选项,,,所以,所以C选项错误.对于B选项,,令得,由于是正整数,所以,所以数列中最大值的项是,所以B选项正确.对于D选项,由上述分析可知,时,,当时,,且.所以数列的前项递减,第项后面递增,不是等差数列,所以D选项错误.故选:AB【点睛】等差数列有关知识的题目,主要把握住基本元的思想.要求等差数列前项和的最值,可以令或来求解.23.(多选题)在数列中,若,(,,为常数),则称为“等方差数列”.下列对“等方差数列”的判断正确的是()A.若是等差数列,则是等方差数列B.是等方差数列C.若是等方差数列,则(,为常数)也是等方差数列D.若既是等方差数列,又是等差数列,则该数列为常数列答案:BCD【分析】根据定义以及举特殊数列来判断各选项中结论的正误.【详解】对于A选项,取,则不是常数,则不是等方差数列,A选项中的结论错误;对于B选项,为常数,则是等方差数列,B选项中的结论正解析:BCD【分析】根据定义以及举特殊数列来判断各选项中结论的正误.【详解】对于A选项,取,则不是常数,则不是等方差数列,A选项中的结论错误;对于B选项,为常数,则是等方差数列,B选项中的结论正确;对于C选项,若是等方差数列,则存在常数,使得,则数列为等差数列,所以,则数列(,为常数)也是等方差数列,C选项中的结论正确;对于D选项,若数列为等差数列,设其公差为,则存在,使得,则,由于数列也为等方差数列,所以,存在实数,使得,则对任意的恒成立,则,得,此时,数列为常数列,D选项正确.故选BCD.【点睛】本题考查数列中的新定义,解题时要充分利用题中的定义进行判断,也可以结合特殊数列来判断命题不成立,考查逻辑推理能力,属于中等题.24.已知等差数列的前n项和为,公差,,是与的等比中项,则下列选项正确的是()A. B.C.当且仅当时,取最大值 D.当时,n的最小值为22答案:AD【分析】运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A,B;由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 城市道路砼路面施工质量控制方案范例
- 建筑工程补料协议书模板
- 工字钢微型桩施工技术方案
- 基层医疗机构管理改革措施
- 企业财务报表编制及分析指导
- 企业年度绩效考核结果分析报告
- 微课程设计方案模板及教学制作实操案例
- 企业市场调研报告模板与撰写技巧
- 合同补充协议样本及法律要点
- 宜家冰激凌活动策划方案(3篇)
- 语言接触语音变异-洞察及研究
- 保障性住房政策宣传课件
- 常见脱发疾病诊疗概述
- 红色景区展馆游览服务礼仪制作人江西旅游商贸职业刘欢01课件
- 生态教育心理干预-洞察及研究
- 电梯井钢结构施工合同(2025版)
- 抽成合同协议书范本
- 生物利用度和生物等效性试验生物样品的处理和保存要求
- 全生命周期健康管理服务创新实践
- 2025-2030年中国宠物疼痛管理行业市场现状供需分析及投资评估规划分析研究报告
- epc甲方如何管理办法
评论
0/150
提交评论