2024-2025学年人教版数学八年级上册全册教案_第1页
2024-2025学年人教版数学八年级上册全册教案_第2页
2024-2025学年人教版数学八年级上册全册教案_第3页
2024-2025学年人教版数学八年级上册全册教案_第4页
2024-2025学年人教版数学八年级上册全册教案_第5页
已阅读5页,还剩378页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

【知识与技能】理解三角形的表示法、分类法以及三边存在的关系,发展空间观念.【过程与方法】经历探索三角形中三边关系的过程,认识三角形这个最简单、最基本的几何图形,提高推理能力.【情感态度与价值观】培养学生的推理能力,运用几何语言有条理的表达能力,体会三角形知识的应用价二、重难点目标【教学重点】掌握三角形三边关系.【教学难点】三角形三边关系的应用.【5min阅读】阅读教材P2~P4的内容,完成下面练习.【3min反馈】1.由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.C是相邻两边组成的角,叫做三角形的内角,简称三角形的角.ABC”.4.等边三角形:三条边都相等的三角形叫做等边三角形.5.等腰三角形:有两条边相等的三角形叫做等腰三角形.在等腰三角形中,相等的边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.6.三角形按边的相等关系分类如下:三角形Error!5.三角形三边关系:三角形的两边的和大于第三边.推论:三角形两边的差小于第三环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】以下列各组线段为边,能组成三角形的是()A.2,3,5B.5,6,10C.1,1,3【互动探索】(引发学生思考)三角形的三边满足:任意两边之和大于第三边.A中,2+3=5,不能组成三角形;B中,5+6>10,能组成三角形;C中,1+1<3,不能组成三角形;D中,3+4<9,不能组成三角形.故选B.【互动总结】(学生总结,老师点评)判定三条线段能否组成三角形,只需判定两条较短线段长度之和大于第三条线段的长度即可.【例2】用一根长为18厘米的细铁丝围成一个等腰三角形.(1)如果腰长是底边长的2倍,那么各边的长是多少?(2)能围成有一边的长为4厘米的等腰三角形吗?【互动探索】(引发学生思考)(1)等腰三角形的周长是18厘米→列方程求解;(2)等腰三角形的周长为18厘米→分类讨论:已知边长是腰长还是底边长→得三角形另外两边长→三角形三边关系进行判断.【解答】(1)设底边长为x厘米,则腰长为2x厘米.根据题意,得x+2x+2x=18,解得x=3.6.∴三边长分别为3.6厘米、7.2厘米、7.2厘米.当4厘米长为底边长时,设腰长为x厘米,则4+2x=18,解得x=7.此时等腰三角形的三边长为7厘米、7厘米、4厘米;当4厘米长为腰长时,设底边长为x厘米,则4×2+x=18,解得x=10.此时不能构成三角形,故可围成满足条件的等腰三角形,且三边长分别为7厘米、7厘米、4厘米.【互动总结】(学生总结,老师点评)当已知等腰三角形的周长和一边长时,需要分类讨论已知的一边长是腰长还是底边长,再解决问题活动2巩固练习(学生独学)①等边三角形是等腰三角形;②三角形任意两边的和大于第三边;③三角形按边分类可分为等腰三角形、等边三角形和不等边三角形;④三角形按角分类应分为锐角三角形、直角三角形和钝角三角形.其中正确的有(C)2.已知a、b、c为三角形的三边,则|a+b-cl-|b—c-a|的化简结果是(D)3.已知等腰三角形的两边长分别为4cm和6cm,且它的周长大于14cm,则第三边长4.三角形的三边长是三个连续的自然数,且三角形的周长小于20,求三边的长.环节3课堂小结,当堂达标【知识与技能】1.掌握三角形的高、中线和角平分线的定义.2.能够准确的画出三角形的高、中线和角平分线.【过程与方法】会用工具准确画出三角形的高、中线与角平分线,通过画图了解三在直线)、三条中线、三条角平分线都分别交于一点【情感态度与价值观】通过对问题的解决,分别培养学生的合作精神,树立学好数学的信心.【教学重点】理解三角形的高、中线与角平分线.【教学难点】会利用三角形的三条高、三条中线与三条角平分线分别交于一点解决问题.阅读教材P4~P5的内容,完成下面练习.【3min反馈】1.从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高.2.在三角形中,连结一个顶点与它对边中点的线段,叫做三角形的中线.三角形的三条中线相交于一点.三角形三条中线的交点叫做三角形的重心.3.在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫三角形的角平分线.环节2合作探究,解决问题1.画三角形的高.如图,线段AD是△ABC中BC边上的高.注意:标明垂直符号和垂足的字母.教师点拨:回忆并演示“过一点画已知直线的垂线”的画法.讨论1:分别在下列锐角三角形、直角三角形、钝角三角形中画出所有的高,观察高与三角形的位置关系.结论:由作图可得:(1)三角形的三条高线相交于二点;(2)锐角三角形的三条高线相交于三角形的内部;(3)钝角三角形的三条高线相交于三角形的外部;(4)直角三角形的三条高线相交于三角形的直角顶点.2.画三角形的中线.如图,线段AD是△ABC中BC边上的中线.讨论2:分别在下列锐角三角形、直角三角形、钝角三角形中画出所有的中线,观察中线与三角形的位置关系.结论:由作图可得:(1)三角形的三条中线相交于二点;(2)锐角三角形的三条中线相交线相交于三角形的内部.3.画三角形的角平分线.讨论3:分别在下列锐角三角形、直角三角形、钝角三角形中画出所有的角平分线,观察角平分线与三角形的位置关系.角形的三条角平分线相交于三角形的内部.活动2巩固练习(学生独学)(学生总结,老师点评)高高三角形的重心的概念请完成本课时对应练习!【知识与技能】通过实践活动,使学生掌握三角形的稳定性.【过程与方法】培养学生从周围生活中发现数学问题,运用所学知识解决实际问题的能力,使学生体验到数学与日常生活的密切联系.【情感态度与价值观】在活动中培养学生知识迁移的能力和创造性思维.二、重难点目标【教学重点】三角形具有稳定性.【教学难点】三角形的稳定性在实际生活中的应用.环节1自学提纲,生成问题【5min阅读】阅读教材P6~P7的内容,完成下面练习.【3min反馈】1.三角形具有稳定性,四边形不具有稳定性.2.如图,盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条,这是为了防止窗框变形.3.2017年11月5日19时45分,我国在西昌卫星发射中心用长征三号乙运载火箭,以“一箭双星”的方式成功发射第二十四、二十五颗北斗导航卫星.这两颗卫星属于中圆地球轨道卫星,是我国北斗三号第一、二颗组网卫星,开启了北斗卫星导航系统全球组网的新②会改变.时代.如图所示,在发射运载火箭时,运载火箭的发射架被焊接成了许多的三角形,这样做的原因是:三角形具有稳定性.A.活动的四边形衣架B.起重机C.屋顶三角形钢架D.索道支架环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】(1)动手操作探究三角形的稳定性.①如图1,将三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗?②如图2,将四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗?架的形状还会改变吗?为什么?从上面的实验过程中你能得出什么结论?与同学交流.价值呢?如果有,你能举出实例吗?是说,三角形具有稳定性,四边形不具有稳定性.②会改变.【解答】(1)①不会改变.③不会改变.原因:斜钉一根木条后,四边形变成两个三角形,由于三角形具有稳定性,所以斜钉一根木条的四边形木架的形状不会改变.从上面的实验得出:三角形具有稳定性.活动2巩固练习(学生独学)1.下列图形中具有稳定性的是(B)A.平行四边形B.等腰三角形C.长方形D.梯形2.下列实际情景运用了三角形稳定性的是(C)A.人能直立在地面上B.校门口的自动伸缩栅栏门C.古建筑中的三角形屋架D.三轮车能在地面上运动而不会倒活动3拓展延伸(学生对学)【例2】要使下列木架稳定,可以在任意两个点之间钉上木棍,各至少需要钉上多少根木棍?【互动探索】三角形具有稳定性,怎样添加木棍才能使多边形具有稳定性呢?【解答】①四边形木架至少需要钉上1根木棍;②五边形木架至少需要钉上2根木棍;③六边形木架至少需要钉上3根木棍.如图所示:【互动总结】(学生总结,老师点评)n边形沿一个顶点的对角线添加(n—3)条木棍后就具有稳定性.环节3课堂小结,当堂达标(学生总结,老师点评)应用请完成本课时对应练习!11.2与三角形有关的角11.2.1三角形的内角第1课时三角形的内角和定理一、基本目标【知识与技能】1.理解“三角形三个内角的和等于180°”.2.能运用三角形内角和定理进行计算.【过程与方法】通过测量、猜想、推理等数学活动,探索三角形的内角和,感受数学思考过程的条理性,发展合情推理能力和语言表达能力.【情感态度与价值观】在观察、操作、推理、归纳等探索过程中,发展合情推理能力,逐步养成和获得数学说理的习惯与能力.【教学重点】三角形内角和定理.【教学难点】三角形内角和定理的推导、验证.【5min阅读】阅读教材P11~P13的内容,完成下面练习.【3min反馈】1.利用三角板的三个角之和为多少度来探索三角形的内角和.2.探索任意三角形的内角和都为180°.(1)在所准备的三角形硬纸片上标出三个内角的编码.(2)动手把一个三角形的两个角剪下,拼在第三个角的顶点处,如图.用量角器量出∠BCD(4)三角形内角和定理:三角形三个内角的和等于180°.环节2合作探究,解决问题活动1小组讨论(师生互学)北偏东80°方向,C岛在B岛的北偏西40°方向.从B岛看A、C两岛的视角∠ABC是多少度?从C岛看A、B两岛的视角∠ACB是多少度?(方法一)分析与解答过程见教材P12~P13.(方法二)【互动探索】(引发学生思考)过点C作AD的垂线,求∠ACB的度数可转化为利用平角为180°来求解.如图,过点C作CF⊥AD,则CH⊥BE.ACB=180°A—B=94°要根据图形特点,在不同的三角形中灵活运用三角形内角和定理求解.活动2巩固练习(学生独学)2.已知三角形三个内角的度数之比为1:3:5,则这三个内角的度数分别为20°,60°,环节3课堂小结,当堂达标(学生总结,老师点评)三角形的内角和定理:三角形三个内角的和等于180°.请完成本课时对应练习!【知识与技能】理解并掌握直角三角形的两锐角互余及其逆定理.【过程与方法】通过三角形的内角和定理推导出直角三角形的两锐角互余.【情感态度与价值观】在观察、操作、推理、归纳等探索过程中,发展合情推理能力,逐步养成和获得数学说理的习惯与能力.【教学重点】直角三角形的两锐角互余.【教学难点】判断三角形是直角三角形的方法.环节1自学提纲,生成问题【5min阅读】阅读教材P13~P14的内容,完成下面练习.【3min反馈】1.如图,在直角三角形ABC中,∠C=90°,由三角形内角和定理,得∠A+∠B+∠C2.直角三角形的两个锐角互余.3.直角三角形可以用符号“Rt△”表示,直角三角形ABC可以写成Rt△ABC.4.由三角形内角和定理可得:有两个角互余的三角形是直角三角形.5.若直角三角形的一个锐角为20°,则另一个锐角等于70°.环节2合作探究,解决问题DD【互动总结】(学生总结,老师点评)“直角三角形的两个锐角互余”常常和三角形内角和定理综合起来求角的度数.【例2】在△ABC中,如果那么△ABC是什么三角形?【互动探索】(引发学生思考)分析法:要判断三角形的形状,应从三角形的边或角入手根据题意,得x+2x+3x=180°,解得x=30°.∴△ABC是直角三角形.【互动总结】(学生总结,老师点评)已知三角形内角的数量关系,可以利用“有两个角互余的三角形是直角三角形”判断三角形的形状.活动2巩固练习(学生独学)A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形(学生总结,老师点评)1.直角三角形的两个锐角互余.2.有两个角互余的三角形是直角三角形.请完成本课时对应练习!【知识与技能】1.三角形的外角的定义和性质.2.能利用三角形的外角性质解决问题.【过程与方法】通过合作研究三角形的内、外角之间的关系,提高学生的合作意识和沟通、表达能【情感态度与价值观】通过观察和动手操作,体会探索过程,学会推理的数学方法,培养主动探索、勇于发现、敢于实践及合作交流的习惯.【教学重点】与三角形的外角有关的性质.【教学难点】三角形外角性质的推导.环节1自学提纲,生成问题【5min阅读】阅读教材P14~P15的内容,完成下面练习.1.如图1,把△ABC的一边BC延长,得到∠ACD.像这样,三角形的一边与另一边的延长线组成的角,叫做三角形的外角证明:过点C作CM//AB,延长BC到点D,3.三角形的一个外角等于与它不相邻的两个内角的和.环节2合作探究,解决问题(方法二)【互动探索】(引发学生思考)考虑利用平角的性质与三角形的内角和定理求【互动总结】(学生总结,老师点评)(1)由此题可以得出:任意三角形的外角和都等于活动2巩固练习(学生独学)1.如果将一副三角板按如图方式叠放,那么∠1等于(B)A.120°C.60°2.求下列各图中∠1的度数.3.求下列各图中∠1和∠2的度数.解:左图:∠1=60°,∠2=30°;右图:∠1=50°,∠2=140°.求∠A的度数.求解.【互动总结】(学生总结,老师点评)解决此类题的一般方法是作辅助线,利用三角形外角的性质将已知与未知的角联系起来计算角的度数.此题也可以延长CP与AB相交,还可以连结AP并延长与BC相交,同学们可以自己尝试另外两种解法.环节3课堂小结,当堂达标(学生总结,老师点评)三角形外角的性质:三角形的外角等于与它不相邻的两个内角的和.练习设计练习设计请完成本课时对应练习!【知识与技能】1.了解多边形及有关概念,理解正多边形及其有关概念.2.能正确判断正多边形的对角线条数.【过程与方法】通过类比三角形的概念归纳多边形的概念,能从实物中辨别寻找出几何图形,并由几何图形联想或设计一些实物形状,丰富学生对几何图形的感性认识.【情感态度与价值观】了解类比这种重要的数学学习方法,体验生活中处处有数学.二、重难点目标【教学重点】多边形、正多边形的概念.【教学难点】解决有关多边形对角线条数的问题.【5min阅读】阅读教材P19~P20的内容,完成下面练习.1.在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形.如果一个多边形由n条线段组成,那么这个多边形叫做n边形.(一个多边形由几条线段组成,就叫做几边形)2.多边形相邻两边组成的角叫做它的内角,多边形的边与它的邻边的延长线组成的角叫做多边形的外角.3.连结多边形不相邻的两个顶点的线段,叫做多边形的对角线.4.各个角都相等,各条边都相等的多边形叫做正多边形.5.下列图形不是凸多边形的是(D)环节2合作探究,解决问题【例1】合作探究,完成下表,将你的思路与同学交流、分享.多边形边数(n)四边形…………【互动探索】(引发学生思考)动手作出四边形、五边形、六边形……的对角线条数,发现规律,总结出n变形的对角线总条数.【解答】多边形边数(n)四边形五边形…123…234…259…【互动总结】(学生总结,老师点评)熟记n(n>3)边形的对角线总条数活动2巩固练习(学生独学)A.直角三角形B.等腰三角形C.长方形D.正方形2.九边形的对角线有(C)4.连结多边形的一个顶点与其他顶点的线段把这个多边形分成了6个三角形,则原多边形是(D)A.五边形B.六边形4.一个n边形共有条对角线,那么十边形共有35条对角线.活动3拓展延伸(学生对学)【例2】若一个多边形截去一个角后,变成十五边形,则原来的多边形的边数可能为()C.14或16D.15或16或17【互动探索】一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,则原来的多边形的边数可能为14,15或16.【答案】A【互动总结】(学生总结,老师点评)一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,解决此类问题可以亲自动手画一下.(学生总结,老师点评)1.多边形、多边形的内角、边、对角线、正多边形的概念.2.正多边形需满足两个条件:(1)各边相等;(2)各角相等.3.n(n>3)边形的对角线条数为请完成本课时对应练习!教学目标教学目标一、基本目标【知识与技能】掌握多边形的内角和公式、多边形的外角和是360°及其简单运用.【过程与方法】通过探索多边形内角和的公式,尝试从不同的角度寻求解决问题的方法,并能有效地解决问题,积累解决问题的经验.【情感态度与价值观】通过动手实践、相互间的交流,进一步激发学习热情和求知欲望.同时,体验猜想得到证实的成就感,在解题中感受生活中数学的存在,体验数学充满探索性和创造性.二、重难点目标【教学重点】多边形内角和公式及多边形的外角和.【教学难点】【5min阅读】阅读教材P21~P23的内容,完成下面练习.【3min反馈】2.探究四边形的内角和是多少?(1)展示1:分成2个三角形,180°×2=360°;(2)展示2:分成4个三角形,180°×4-360°=360°;(3)展示3:分成3个三角形,180°×3-180°=360°.展示1展示2展示3多边形的边数34567…n从一个顶点出发画01234…12345…多边形的内角和…4.如果四边形的一组对角互补,那么另一组对角也互补.环节2合作探究,解决问题【例1】一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数和内角【互动探索】(引发学生思考)多边形的内角和公式→建立等式→求得多边形的边数→得出多边形的内角和.【解答】设这个多边形的边数为n.解得n=7.即这个多边形的边数为7.【互动总结】(学生总结,老师点评)任意多边形的外角和都是360°,与边数无关.活动2巩固练习(学生独学)1.正十二边形的每一个内角的度数为(C)C.150°2.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是11.3.正多边形的一个外角等于20°,则这个正多边形的边数是18.4.内角和与外角和相等的多边形是四边形.活动3拓展延伸(学生对学)【例2】如图,小亮从点A出发,沿直线前进10米后向左转30度,再沿直线前进10米,又向左转30度,这样走下去,他第一次回到出发点A时,一共走了多少米?【互动探索】确定小亮走过的是什么图形(正多边形→利用正多边形的外角和是360°求得边数→确定小亮走的路程.【解答】∵小亮每次都是沿直线前进10米后向左转30度,二他第一次回到出发点A时,一共走了12×10=120(米).【互动总结】(学生总结,老师点评)本题考查了正多边形的边数的求法和多边形的外角和,根据题意判断出小亮走过的图形是正多边形是解题的关键.(学生总结,老师点评)角和公式请完成本课时对应练习!本章主要内容有三角形的有关线段、与三角形有关的角、多边形及其内角和.三角形是最简单的多边形,也是认识其他图形的基础.本章将在学习与三角形有关的线段(三角形的高、中线和角平分线)和角(三角形的内角、外角)的基础上学习多边形的有关知识,如借助三角形的内角和探究多边形的内角和.学习本章后,我们不仅可以进一步认识三角形,还可以了解一些几何中研究问题的基本思路和方法.在中考中,本章考查的重点是三角形的有关线段、角,多边形及其内角和.【本章重点】三角形三边关系、内角和,多边形的外角和与内角和公式.【本章难点】三角形内角和等于180°的证明,根据三条线段的长度判断它们能否构成三角形.【本章思想方法】1.体会和掌握分类讨论思想.如:解决已知等腰三角形的周长和一边长的相关问题或与三角形高相关的问题,需要分类讨论.2.体会方程思想.如:根据多边形内角和公式可以建立方程,从而运用方程思想解决相关问题.课时计划课时计划11.1与三角形有关的线段11.2与三角形有关的角11.3多边形及其内角和3课时3课时2课时【知识与技能】1.掌握全等形、全等三角形的概念,能运用符号语言正确表示两个三角形全等.2.能熟练地找出两个全等三角形的对应元素,理解全等三角形的性质.【过程与方法】经历探索全等三角形性质的过程,在观察中寻求新知,在探索中培养学生发现问题、解决问题的能力.【情感态度与价值观】在探究和运用全等三角形知识的过程中感受到数学活动的乐趣.二、重难点目标【教学重点】全等三角形的认识.【教学难点】全等三角形的性质的应用.环节1自学提纲,生成问题【5min阅读】阅读教材P31~P32的内容,完成下面练习.【3min反馈】1.能够完全重合的两个图形叫做全等形;能够完全重合的两个三角形叫做全等三角形.2.全等用符号≌表示,读作全等于.3.△ABC全等于三角形△DEF,用符号表示为△ABC≌△DEF.4.若△ABC≌△DEF,∠A的对应角是∠D,∠B的对应角是∠E,则∠C与∠F是对应角;AB与DE是对应边,BC与EF是对应边,AC与DF是对应边.环节2合作探究,解决问题活动1小组讨论(师生对学)ADO≌△AEO,指出这两个三角形的对应角.【互动探索】(引发学生思考)全等三角形的对应元素该如何找?【互动总结】(学生总结,老师点评)找全等三角形的对应元素的关键是准确分析图形.另外,记全等三角形时,对应顶点要写在对应的位置上,这样就可以比较容易地写出对应角和对应边了.【互动探索】(引发学生思考)求角和线段长,从全等三角形的性质出发去思考.【互动总结】(学生总结,老师点评)全等三角形的对应边相等,对应角相等.活动2巩固练习(学生独学)1.已知图中的两个三角形全等,则∠α的度数是(D)bA.72°B.60°C.58°A.5C.3(1)写出相等的线段与角.活动3拓展延伸(学生对学)的度数.BB以从全等三角形的性质出发.【互动总结】(学生总结,老师点评)解题时,要将所求的角与已知角通过全等及三角形内角之间的关系联系起来.环节3课堂小结,当堂达标(学生总结,老师点评)全等形的定义全等形的定义表示方法全等三角形的应边、对应角对应边相等请完成本课时对应练习!第1课时边边边【知识与技能】1.会运用“边边边”证明三角形全等.2.会根据“边边边”作一个角等于已知角.【过程与方法】经历探索三角形全等条件的过程,体验由操作、归纳得出结论的过程.【情感态度与价值观】【教学重点】【教学难点】探索三角形全等的条件的过程.阅读教材P35~P37的内容,完成下面练习.环节2合作探究,解决问题DD【互动探索】(引发学生思考)要证△ABC≌△ADC,只需看这两个三角形的三边是否相【互动总结】(学生总结,老师点评)注意运用“SSS”证三角形全等时的证明格式;在证DEF.【互动探索】(引发学生思考)已知两个三角形有两组对边相等,同一直线上的一组边相【互动总结】(学生总结,老师点评)判定两个三角形全等,先根据已知条件或易证的结论确定判定三角形全等的方法,然后根据判定方法,看缺什么条件,再去证什么条件.BB【互动探索】(引发学生思考)要判断角相等,可考虑用三角形全等证明,需添加辅助线AC构造三角形.【解答】结论:∠B=∠D.理由如下:连结AC.【互动总结】(学生总结,老师点评)要证∠B与∠D相等,可证这两个角所在的三角形全等,现有的条件并不满足,可以考虑添加辅助线证明.活动2巩固练习(学生独学)1.如图,线段AD与BC交于点O,且AC=BD,AD=BC,则下面的结论中不正确的OA、OB上分别取OM=ON,移动角环节3课堂小结,当堂达标请完成本课时对应练习!【知识与技能】掌握三角形全等的“SAS”判定方法,并能进行简单的应用.【过程与方法】经历探究两个三角形全等的过程,体会利用操作、归纳获得数学规律的过程,进而培养学生有条理的分析、推理能力.【情感态度与价值观】通过探究活动,体会数学充满了探索和创造,提高学生的学习热情.二、重难点目标【教学重点】应用“SAS”证明两个三角形全等.【教学难点】理解满足“SSA”的两个三角形不一定全等.【5min阅读】阅读教材P37~P39的内容,完成下面练习.【3min反馈】1.两边和它们的夹角分别相等的两个三角形全等(可以简写成“边角边”或“SAS”).2.有两边和一个角对应相等的两个三角形不一定全等.可得到△AOD≌△COB,从而可以得到AD=CB.环节2合作探究,解决问题活动1小组讨论(师生互学)【证明】∵AE//BC,【互动总结】(学生总结,老师点评)判定两个三角形全等时,若有两边一角对应相等,则角必须是两边的夹角.CC【解答】∵∠1=∠2,活动2巩固练习(学生独学)活动3拓展延伸(学生对学)(2)AE⊥CG.形的性质和正方形的性质即可证得AE⊥CG.【互动总结】(学生总结,老师点评)解本题的关键是证得△ADE≌△CDG.(学生总结,老师点评)个三角形全等请完成本课时对应练习!第3课时角边角与角角边【知识与技能】掌握三角形全等的证明方法“ASA”和“AAS”,并能解决相应的实际问题.【过程与方法】经历探究全等三角形判定的过程,进一步体会由操作、归纳获得数学规律的过程.【情感态度与价值观】1.通过尺规作图、探究、归纳、交流,使学生获得一些研究问题的经验和方法,发展实践能力和创新精神.2.培养良好的几何推理意识,发展数学思维,感悟全等三角形的应用.二、重难点目标【教学重点】已知两角一边的三角形全等的探究.【教学难点】灵活运用三角形全等条件证明三角形全等.【5min阅读】阅读教材P39~P41的内容,完成下面练习.【3min反馈】1.两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).2.两角和其中一角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”).3.能确定△ABC≌△DEF的条件是(D)4.如图所示,已知点F、E分别在AB、AC上,且AE=AF,请你补充一个条件∠B=∠C,使得△ABE≌△ACF.(只需填写一种情况即可)CC教师点拨:此题答案不唯一,还可以填或∠AEB=∠AFC.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】如图,AD//BC,BE//DF,AE=CF,由已知中的平行线段,可得∠A=∠C,∠DFA=∠BEC.【证明】∵AD//BC,BE//DF,若BF=AC,求证:△ADC≌△BDF.【证明】∵AD⊥BC,BE⊥AC,【互动总结】(学生总结,老师点评)(1)在解决三角形全等的问题中,要注意挖掘题中的活动2巩固练习(学生独学)1.完成教材P41“练习”第1~2题.略环节3课堂小结,当堂达标(学生总结,老师点评)全等三角形的判定的夹边对应相等的请完成本课时对应练习!第4课时斜边、直角边一、基本目标【知识与技能】1.掌握直角三角形全等的判定方法——斜边、直角边(或HL).【过程与方法】经历探索直角三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.【情感态度与价值观】通过探究与交流解决一些问题,获得成功的体验,进一步激发探究的积极性.二、重难点目标【教学重点】直角三角形全等的判定方法的理解和应用.【教学难点】利用直角三角形全等的判定定理解决问题.环节1自学提纲,生成问题【5min阅读】阅读教材P41~P42的内容,完成下面练习.【3min反馈】1.斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或"HL").3.如果两个直角三角形的两条直角边对应相等,那么两个直角三角形全等的依据是A.AASC.HL环节2合作探究,解决问题【互动探索】(引发学生思考)可以通过证△ABC≌△ADC得到∠1=∠2.结合已知条件,可简化,但前提是已知两个直角三角形,即在证明格式上表明“Rt△”.DD【证明】连结CD.【互动总结】(学生总结,老师点评)观察图形,当不能直接通过全等证边(或角)相等时,可根据图形特点作辅助线或转化为证其他边(或角)相等.1.下列条件,不能判定两个直角三角形全等的是(B)A.斜边和一直角边对应相等B.两个锐角对应相等C.一锐角和斜边对应相等D.两条直角边对应相等2.如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B、C作过点A的直线的AB=DE.求证:CE=BF.活动3拓展延伸(学生对学)【例3】如图,已知AD、AF分别是两个钝角△ABC和△ABE的高,如果AD=AF,AC【互动探索】要证BC=BE,可以通过三角形全等解决,本题应该通过证明哪对三角形全等来解决呢?【互动总结】(学生总结,老师点评)证明线段相等可以通过证明三角形全等解决,在一个问题中,有时我们需要多次证明全等来创造已知条件,从而得到结论.环节3课堂小结,当堂达标(学生总结,老师点评)请完成本课时对应练习!【知识与技能】1.初步掌握角的平分线的性质定理.2.掌握用尺规作已知角的平分线的方法.3.能运用角的平分线性质定理解决简单的几何问题.【过程与方法】在利用尺规作图时,让学生在动手操作的过程中深刻理解角平分线的画法及发现角平分线的性质.【情感态度与价值观】在探索角的平分线的画法和性质中培养学生探究问题的兴趣,增强解决问题的信心.【教学重点】1.利用尺规作已知角的平分线.2.角平分线的性质的证明及运用.【教学难点】角平分线性质的应用.【5min阅读】阅读教材P48~P49的内容,完成下面练习.【3min反馈】1.把一个角分成两个相等的角的射线叫做角的平分线.2.角的平分线的性质:角的平分线上的点到角的两边的距离相等.它的题设是角的平分线上的点,结论是此点到角的两边的距离相等.3.一般情况下,我们要证明一个几何命题时,可以按照类似的步骤进行,即(2)根据题意,画出图形,并用符号表示已知和求证:(3)经过分析,找出由已知推出要证的结论的途径,写出证明过程.略环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】如图,AB//CD,以点A为圆心,于E、F两点,再分别以E、F为圆心,大于的长为半径画弧,两AP,交CD于点M.若∠ACD=120°,求∠MAB的度数.【互动探索】(引发学生思考)明确尺规所作的射线AP是∠CAB的平分线.要求【解答】∵AB//CD,【例2】如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于点E,F【互动探索】(引发学生思考)要求CF=EB,需证Rt△DCF≌Rt△DEB,而由角平分线的性质可得DE=DC,从而解决问题.【互动总结】(学生总结,老师点评)角平分线的性质是判定线段相等的一个重要依据,活动2巩固练习(学生独学)1.如图所示,在Rt△ACB中,∠C=90°,AD平分∠BAC,若B2.如图所示,D是△ABC外角∠ACG的平分线上的一点,DE⊥AC,DF⊥CG,【例3】如图,四边形ABCD中,∠B=90°,AB//CD,M为BC边上的一点,且AM(2)M为BC的中点.【互动探索】(1)要证AM⊥DM,可转化为求∠AMD=90°.由平行线中,同旁内角的角平分线相交成的角等于90°可得结论;(2)要证M为BC的中点,即证BM=CM.由题意知,需作辅助线MN(如图),利用角平分线的性质得出结论.【互动总结】(学生总结,老师点评)在已知角的平分线的前提下,作角两边的垂线段是常用辅助线之一.角平线的性质是证线段相等的另一途径.环节3课堂小结,当堂达标(学生总结,老师点评)居定理练习设计练习设计请完成本课时对应练习!教学目标教学目标【知识与技能】理解角平分线的性质定理的逆定理(即判定定理),能利用角平分线的判定定理解决实际问题.【过程与方法】经历探究角平分线的性质定理的逆定理的过程,进一步体验证明几何命题的步骤,能够灵活运用性质定理解决实际问题.【情感态度与价值观】在探究角的平分线的判定定理的过程中,培养学生探究问题的兴趣、合作交流的意识、动手操作的能力与探索精神,增强解决问题的信心,获得解决问题的成功体验.【教学重点】角的平分线的判定定理的证明及应用.【教学难点】角的平分线的判定定理的应用.环节1自学提纲,生成问题【5min阅读】阅读教材P50的内容,完成下面练习.【3min反馈】1.角的内部到角的两边的距离相等的点在角的平分线上.2.(1)三角形的三条角平分线相交于一点,它到三边的距离相等.(2)三角形内,到三边距离相等的点是三条角平分线的交点.环节2合作探究,解决问题【例1】已知:如图,△ABC.求作:点P,使得点P在△ABC内,且到三边AB、BC、CA的距离相等.作法:(提示)作三个内角平分线交于一点P,点P即为所求作的点.【互动探索】(引发学生思考)证明一条射线是角平分线常添加的辅助线是什么?【互动总结】(学生总结,老师点评)在遇到角平分线的问题时,往往过角平分线上的一点作角两边的垂线段,利用角平分线的判定或性质解决问题.活动2巩固练习(学生独学)PB,则∠1与∠2的大小是(A)2.如图,△ABC中,点0是△ABC内一点,且点0到△ABC三边的距离相等,∠A=ccC.130°3.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个锐角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的平分线.”你认为小明的想法正确吗?请说明理由.解:小明的想法正确.理由如下:作PC⊥OB于点C,设另一把直尺与OA交于点D.【例3】如图,直线a、b、c表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,可供选择的站址有几处?如何选?请作简要说明并画出图形.【互动探索】△ABC的内角平分线的交点到三角形三边的距离相等,那么本题只有一处站址吗?【解答】∵△ABC内角平分线的交点到三角形三边的距离相等,∴△ABC内角平分线的交点P₁满足条件.如图,点P₂是△ABC两条外角平分线的交点,过点P₂作P₂E⊥AB,P₂D⊥BC,P₂F⊥AC,∴点P₂到△ABC的三边的距离相等,∴△ABC两条外角平分线的交点P₂到其三边的距离也相等,满足这条件的点有3个,综上所述,到三条公路的距离相等的点有4个,故可供选择的地址有4处.P₂P₂【互动总结】(学生总结,老师点评)由三角形内角平分线的交点到三角形三边的距离相等,得三角形内角平分线的交点满足条件,然后利用角平分线的性质,证得三角形两条外角平分线的交点到其三边的距离也相等,这样的点有3个,则可供选择的站址有4处.环节3课堂小结,当堂达标(学生总结,老师点评)在鱼的平分线上请完成本课时对应练习!本章内容主要包括全等三角形、三角形全等的判定、角的平分线的性质.上一章我们通过推理论证得到了三角形的内角和定理等重要结论.本章中,推理论证将发挥更大的作用.本章通过证明三角形全等来证明线段相等或角相等,并由此推出了角的平分线的性质.在中考中,全等三角形的性质与判断是考查的热点之一.角的平分线的性质一般不单独考查,多结合三角形或多边形的性质进行考查.【本章重点】全等三角形的性质与判定、角平分线的性质.【本章难点】全等三角形的几种判定方法的选择.【本章思想方法】1.体会和掌握分类讨论思想.如:已知两个三角形全等,但不清楚对应边和对应角,这个时候就要用到分类讨论思想,要考虑到所有的情况.2.体会转化的数学思想.如:在解决与全等三角形有关的实际问题时,一般需要先将实际问题转化为全等三角形问题,进而解决问题.12.1全等三角形12.2三角形全等的判定12.3角的平分线的性质1课时【知识与技能】1.理解轴对称图形和两个图形关于某条直线对称的概念.2.能识别简单的轴对称图形及其对称轴.【过程与方法】通过轴对称图形和两个图形成轴对称的学习以及动手操作,让学生关注生活,学会观察,增强交流.【情感态度与价值观】通过轴对称图形和两个图形成轴对称的学习,激发学生学习欲望,主动参与数学学习活动,体会图形的美,同时感悟数学来源于生活又用于生活.二、重难点目标【教学重点】轴对称图形和两个图形关于某直线对称的概念以及区别和联系.【教学难点】轴对称的性质.自学提纲,生成问题自学提纲,生成问题【5min阅读】阅读教材P58~P60的内容,完成下面练习.【3min反馈】1.如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.2.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线就是对称轴,折叠后重合的点是对应点,叫做对称3.经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.4.图形轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.5.下列体育运动标志中,不是轴对称图形的有1个.环节2合作探究,解决问题【例1】判断下列图形是否为轴对称图形?如果是,说出它有几条对称轴.【互动探索】(引发学生思考)如何判断一个图形是否是轴对称图形?如何找轴对称图形的对称轴?【解答】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.对称轴;(10)有2条对称轴.【互动总结】(学生总结,老师点评)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线. =95°.【答案】2cm95°【互动总结】(学生总结,老师点评)根据成轴对称的两个图形全等及全等的性质得到对应线段相等,对应角相等.活动2巩固练习(学生独学)1.下图中的轴对称图形有(B)A.(1)(2)B.2.如图,一种滑翔伞的形状是左右成轴对称的四边形ABCD,其中∠BAD=150°,∠BA.130°正多边形的边数3456734567根据上表,猜想正n边形有n条对称轴.解:如图.环节3课堂小结,当堂达标1.可用折叠法判断是否为轴对称图形.2.多角度、多方法思考对称轴的条数.3.对称轴是一条直线,一条垂直于对应点连线的直线.4.轴对称是指两个图形的位置关系,轴对称图形是指一个具有特殊形状的图形.练习设计练习设计第2课时线段垂直平分线的性质和判定教学目标教学目标【知识与技能】探索并理解线段垂直平分线的性质及判定.【过程与方法】经历探索轴对称图形性质及判定的过程,发展空间观念,培养学生认真探究、积极思考的能力.【情感态度与价值观】通过对轴对称图形性质的探索,促使学生对轴对称有了更进一步的认识,活动与探究的过程可以更大程度地激发学生学习的主动性和积极性,并使学生具有一些初步研究问题的能力.【教学重点】掌握线段垂直平分线的性质及判定.【教学难点】运用其性质及判定解答相关问题.环节1自学提纲,生成问题【5min阅读】阅读教材P61~P62的内容,完成下面练习.【3min反馈】2.垂直平分线的性质:线段垂直平分线的点与这条线段两个端点的距离相等.3.垂直平分线的判定:与线段两个端点距离相等的点在这条线段的垂直平分线上.A.MA=MB,NA=NBB.MA=MB,MNLAB环节2合作探究,解决问题【互动总结】(学生总结,老师点评)利用线段垂直平分线的性质,可以实现线段之间的相互转化,从而求出未知线段的长.试说明AD与EF的关系.从而找出AD与EF的关系.【解答】AD垂直平分EF.∴A、D均在线段EF的垂直平分线上,即直线AD垂直平分线段EF.【互动总结】(学生总结,老师点评)证线段垂直平分线的方法1即定义,证垂直平分,方法2即线段垂直平分线的判定定理.活动2巩固练习(学生独学)1.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点,已知线段PA=5,则线段PB的长度为(B)A.62.到平面内不在同一直线上的三个点A、B、C的距离相等的点有1个.∴DF是线段AB的垂直平分线.活动3拓展延伸(学生对学)FF≌△FCE,根据全等三角形的性质即可解答;(2)根据线段垂直平分线的性质判断出AB=BF即可.∵E是CD的中点,∴BE是线段AF的垂直平分线,【互动总结】(学生总结,老师点评)此题主要考查线段的垂直平分线的性质等几何知识.线段垂直平分线上的点到线段两个端点的距离相等,利用它可以证明线段相等.(学生总结,老师点评)垂直平分Error!线请完成本课时对应练习!【知识与技能】理解并掌握线段垂直平分线的有关作图.【过程与方法】经历探索线段垂直平分线的有关作图的过程,发展空间观念,培养学生认真探究、积极思考的能力.【情感态度与价值观】通过作轴对称图形的对称轴,促使学生对轴对称有了更进一步的认识,活动与操作的过程可以更大程度地激发学生学习的主动性和积极性,并使学生具有一些初步研究问题的能力,同时培养学生动手操作的意识及能力.【教学重点】理解作轴对称图形的对称轴的方法.【教学难点】能解决有关线段垂直平分线的作图题.【5min阅读】阅读教材P62~P63的内容,完成下面练习.【3min反馈】1.如果两个图形成轴对称,其对称轴就是任何一对对应点所连线段的垂直平分线.因此,我们只要找到一对对应点,作出连结它们的线段的垂直平分线,就可以得到这两个图形的对称轴.2.同样,对干轴对称图形,只要找到任意一组对应点,作出对应点所连线段的垂直平分线,就得到此图形的对称轴.3.下面的图形是轴对称图形吗?如果是,请说出它的对称轴.解:它们都是轴对称图形,第一幅图的对称轴是中间的水平直线,第二、三幅图的对称轴是中间的竖着直线.4.作线段AB的垂直平分线.解:作法:(1)分别以点A、B为圆心,以大于的长为半径作弧,两弧相交于E、F两点;(2)作直线EF,EF即为所求的直线.环节2合作探究,解决问题活动1小组讨论(师生互学)【例题】找出下列图形的所有的对称轴,并——画出来.【互动探索】(引发学生思考)如何作轴对称图形的对称轴?【解答】所画对称轴如下所示:【互动总结】(学生总结,老师点评)对于轴对称图形,只要找到任意一组对应点,作出对应点所连线段的垂直平分线,就得到此图形的对称轴.活动2巩固练习(学生独学)1.图中有阴影的三角形与哪些三角形成轴对称?整个图形是轴对称图形吗?它共有几条对称轴?解:图中有阴影的三角形与三角形1、3成轴对称,整个图形是轴对称图形,它共有2条对称轴.2.观察图中的图形,是轴对称图形的画出所有的对称轴.略环节3课堂小结,当堂达标作对称轴的步骤:先找出任意一对对应点,再作出对应点所连线段的垂直平分线.练习设计练习设计教学目标教学目标【知识与技能】掌握作已知图形关于直线的轴对称图形的方【过程与方法】在探索问题的过程中体会知识间的关系,并从实践中体会轴对称变换在实际生活中的应用,感受数学与生活的联系.【情感态度与价值观】经历实际操作、认真体验的过程,发展学生的思维空间,培养学生的应用意识和探究精二、重难点目标【教学重点】作出简单平面图形关于直线的轴对称图形.【教学难点】利用轴对称进行一些图案设计环节1自学提纲,生成问题【5min阅读】阅读教材P67~P68的内容,完成下面练习.【3min反馈】1.画出下列轴对称图形的所有对称轴.略2.由一个平面图形可以得到它关于一条直线I成轴对称的图形,这个图形与原图形的形状、大小完全一样;新图形上一个点,都是原图形上的某一点关于直线I的对称点;连结任意一对对应点的线段被对称轴垂直平分.3.几何图形都可以看作由点组成,只要分别作出这些点关于对称轴的对应点,再连结这些对应点,就可以得到原图形的轴对称图形.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】画出△ABC关于直线I的对称图形.【互动探索】(引发学生思考)画已知图形关于直线对称的图形的关键是什么?【解答】如图所示:【互动总结】(学生总结,老师点评)我们在画一个图形关于某条直线对称的图形时,先确定一些特殊的点,然后作这些特殊点的对称点,顺次连结即可得到.活动2巩固练习(学生独学)1.将一张正方形纸片按如图1,图2所示的方向对折,然后沿图3中的虚线剪裁得到图4,将图4的纸片展开铺平,再得到的图案是(B)线成轴对称,请在下面给出的图中画出4个这样的△DEF.图略活动3拓展延伸(学生对学)【例2】如图,将矩形ABCD沿DE折叠,使A点落在BC上的F处,若∠EFB=60°,则∠CFD=()A.20°【互动探索】根据图形翻折变换后全等可得△ADE≌△FDE,∴∠EAD=∠EFD=90°.∵【互动总结】(学生总结,老师点评)折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.环节3课堂小结,当堂达标(学生总结,老师点评)作与图形成轴对称的图形,关键在于将图形抽象出各点,然后作点的对称点,再连线即请完成本课时对应练习!第2课时坐标中的轴对称一、基本目标【知识与技能】理解并掌握关于x轴、y轴对称的点的坐标的规律.【过程与方法】1.在探索关于x轴、y轴对称的点的坐标的规律时,发展学生形象思维能力和数形结合的思维意识.2.在同一坐标系中,感受图形上点的坐标的变化与图形的轴对称变换之间的关系.【情感态度与价值观】在探索规律的过程中,培养学生的应用意识和探究精神,提高学生的求知欲和好奇二、重难点目标【教学重点】直角坐标系中关于x轴、y轴对称的点的特征.【教学难点】能解决有关坐标中的轴对称问题.【5min阅读】阅读教材P68~P70的内容,完成下面练习.【3min反馈】1.(1)点(x,y)关于x轴对称的点的坐标为(x,一y);(2)关于x轴对称的点的坐标的特点:横坐标不变,纵坐标互为相反数.2.(1)点(x,y)关于y轴对称的点的坐标为(一x,v);(2)关于x轴对称的点的坐标的特点:横坐标互为相反数,纵坐标不变.3.点P(一4,3)关于x轴的对称点为Q,则点O的坐标为(-4,一3).环节2合作探究,解决问题【例1】在平面直角坐标系中,已知点A(-3,1)、B(-1,0)、C(-2,—1),请在图中画出△ABC,并画出与△ABC关于y轴对称的图形.结,即可作出已知图形关于坐标轴的对称图形.活动2巩固练习(学生独学)1.点A(2,—3)向上平移6个单位后的点关于x轴对称的点的坐标是(2,-3).2.点P(3,4)关于y轴对称的点解得a=-8,b=-5.(2)∵A、B关于y轴对称,3.画出△ABC关于x轴对称的图形△A₁B₁C₁,并指出△A₁B₁C₁的顶点坐标.活动3拓展延伸(学生对学)【例3】如图,在10×10的正方形网格中,每个小方格的边长都是1,四边形ABCD的四个顶点在格点上.(1)若以点B为原点,线段BC所在直线为x轴建立平面直角坐标系,画出四边形ABCD关于y轴对称的四边形A₁B₁C₁D₁;【互动探索】(1)以点B为原点,线段BC所在直线为x轴建立平面直角坐标系,然后作出各点关于y轴对称的点,顺次连结即可;(2)根据直角坐标系的特点,写出点D₁的坐标;(3)把四边形ABCD分解为两个直角三角形,求出面积.【解答】(1)画图略.【互动总结】(学生总结,老师点评)轴对称变换作图,基本作法是:(1)先确定图形的关键点;(2)利用轴对称性质作出关键点的对称点;(3)按原图形中的方式顺次连结对称点.求多边形的面积可将多边形转化为规则图形的面积的和或差求解.环节3课堂小结,当堂达标(学生总结,老师点评)坐标中的轴对称练习设计练习设计请完成本课时对应练习!13.3等腰三角形教学目标教学目标【知识与技能】1.了解等腰三角形的概念,掌握等腰三角形的性质.2.利用等腰三角形的性质解决相关问题.【过程与方法】经历等腰三角形性质的探究过程,通过实践、操作、观察、猜想、论证,发展了合情推理的能力和演绎推理的能力,同时增强了语言表达能力.【情感态度与价值观】【教学重点】【教学难点】阅读教材P75~P77的内容,完成下面练习.夹的角叫做顶角,底边与腰的夹角叫底角.2.教材P75【探究】:(1)如图,把一张长方形的纸片按图中虚线对折,并剪去阴影部分,再把它展开,得到△ABC.CADAB(2)把剪出的等腰三角形ABC沿折痕AD对折,找出其中重合的线段和角:①重合的线 与∠ADC.3.等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”).(2)等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简写成“三线合的对称轴.4.在△ABC中,若AC=AB,则∠环节2合作探究,解决问题活动1小组讨论(师生互学)角的度数.可求得各角的度数.解得x=36.【互动总结】(学生总结,老师点评)利用等腰三角形的性质和【互动探索】(引发学生思考)要证∠BAD=2∠DBC,考虑作∠BAD的角等腰三角形的高,再根据等角的余角相等求解.【证明】过点A作AE⊥BC于点E.【互动总结】(学生总结,老师点评)解决本题的关键:(1)从要证等式中,角之间的数量关系,利用等腰三角形“三线合一”作辅助线;(2)在有直角的平面几何图形中,可用等角的余角相等证明角相等.活动2巩固练习(学生独学)1.已知等腰三角形的一个角为80°,则其顶角为(D)A.20°B.50°或80°C.10°D.20°或80°∴AM为三角形ABC的边BC上的中线,活动3拓展延伸(学生对学)【互动探索】要求∠A,需先讨论∠A是等腰△ABC的顶角还是底角,再结合三角形的内角和求解.【互动总结】(学生总结,老师点评)本题体现了分类讨论思想.等腰三角形的两个底角相等,已知一个内角,则这个角可能是底角也可能是顶角.(学生总结,老师点评)等腰三角形的性质Error!请完成本课时对应练习!【知识与技能】1.探索等腰三角形的判定方法.2.掌握等腰三角形性质与判定的综合应用.【过程与方法】经历判定等腰三角形的探究过程,通过实践、操作、观察、猜想、论证,发展了合情推理的能力和演绎推理的能力,同时增强数学语言表达能力.【情感态度与价值观】在活动中,培养学生自主探究、合作交流、应用数学的意识,感受数学学习的乐趣,激发学习数学的兴趣.【教学重点】掌握等腰三角形的判定方法.【教学难点】会运用等腰三角形的判定方法解决问题.环节1自学提纲,生成问题【5min阅读】阅读教材P77~P78的内容,完成下面练习.【3min反馈】1.等腰三角形的定义:如果一个三角形有两边相等,这个三角形为等腰三角形.3.等腰三角形的判定方法:如果一个三角形有两个角相等,那么这两个角所对的边也环节2合作探究,解决问题活动1小组讨论(师生互学)【证明】连结BC角形中,最后通过证明它们所对的角相等,而证得这两条线段相等【例2】如图,在△ABC中,∠ACB=90°,CD是AB边上的高,AE是∠BAC的平分线,AE与CD交于点F,求证:△CEF是等腰三角形.CC【互动总结】(学生总结,老师点评)“等角对等边”是判定等腰三角形的重要依据,是先有角相等再有边相等,只限于在同一个三角形中,若在两个不同的三角形中,此结论不一定成立.活动2巩固练习(学生独学)55°.求证:△BDE是等腰三角形.∴∠B=∠BDE,∴△BDE是等腰三角形.活动3拓展延伸(学生对学)【例3】已知平面直角坐标系中,点A的坐标为(一2,3),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有()【互动探索】∵△AOP为等腰三角形,所以可分三类讨论:(1)AO=AP(有一个).此时只要以A为圆心,AO长为半径画圆,可知圆与y轴交于0点和另一个点,另一个点就是点P₁;(2)AO=0P(有两个).此时只要以0为圆心A0长为半径画圆,可知圆与y轴交于两个点,这两个点就是P₂、P₄;(3)AP=OP(一个).作AO的中垂线与y轴有一个交点,该交点就是点P³.综上所述,共有4个.故选B.【答案】B【互动总结】(学生总结,老师点评)解决此题的关键是:(1)利用分类讨论思想确定等腰三角形的两腰;(2)利用尺规作图和数形结合思想确定等腰三角形的个数.环节3课堂小结,当堂达标(学生总结,老师点评)对于判断三角形是否是等腰三角形这一类问题,常常是抓一个三角形有两个角相等,转化到对应的边相等,可以借助计算,运用平行线的性质,以及同角或等角的余角相等等方法去辅助证明.请完成本课时对应练习!第3课时等边三角形的性质与判定【知识与技能】了解等边三角形的定义,掌握等边三角形的性质和判定方法.【过程与方法】经历探究等边三角形性质与判定方法的过程,培养独立思考问题、解决问题的能力以及应用数学的意识.【情感态度与价值观】在活动中,体会数学与现实的密切联系,感受数学的应用价值和学习的乐趣,激发数学学习的兴趣.【教学重点】掌握等边三角形的性质和判定方法.【教学难点】会用等边三角形的相关性质解决简单的实际问题.【5min阅读】阅读教材P79~P80的内容,完成下面练习.【3min反馈】1.等边三角形是三边都相等的特殊的等腰三角形.2.等边三角形的性质:等边三角形的三个内角都相等,并且每一个角都等于60°.3.等边三角形的判定方法:三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.环节2合作探究,解决问题【例1】如图,△ABC是等边三角形,0为△ABC内任意一点,OE//AB,OF//AC,分别交BC于点E、F,△OEF是等边三角形吗?为什么?CC∴△OEF是等边三角形.【互动总结】(学生总结,老师点评)据三个角都相等的三角形是等边三角形或者有一个角为60°的等腰三角形为等边三角形判定.活动2巩固练习(学生独学)CD,DM⊥BC,垂足为M,求证:BM=EM.证明:连结BD.∴BD=ED,△BDE为等腰三角形.∴△ADE是等边三角形.活动3拓展延伸(学生对学)=CQ,问△APQ是什么形状的三角形?试说明你的结论.cc等边三角形【解答】△A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论