版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025年雄县高考临考冲刺数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,其中是虚数单位,则对应的点的坐标为()A. B. C. D.2.已知椭圆内有一条以点为中点的弦,则直线的方程为()A. B.C. D.3.下列几何体的三视图中,恰好有两个视图相同的几何体是()A.正方体 B.球体C.圆锥 D.长宽高互不相等的长方体4.若复数满足,则的虚部为()A.5 B. C. D.-55.已知等差数列满足,公差,且成等比数列,则A.1 B.2 C.3 D.46.函数在上单调递减,且是偶函数,若,则的取值范围是()A.(2,+∞) B.(﹣∞,1)∪(2,+∞)C.(1,2) D.(﹣∞,1)7.方程在区间内的所有解之和等于()A.4 B.6 C.8 D.108.设数列的各项均为正数,前项和为,,且,则()A.128 B.65 C.64 D.639.总体由编号为01,02,...,39,40的40个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表(如表)第1行的第4列和第5列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()A.23 B.21 C.35 D.3210.阅读如图的程序框图,若输出的值为25,那么在程序框图中的判断框内可填写的条件是()A. B. C. D.11.在边长为1的等边三角形中,点E是中点,点F是中点,则()A. B. C. D.12.已知函数(其中为自然对数的底数)有两个零点,则实数的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知下列命题:①命题“∃x0∈R,”的否定是“∀x∈R,x2+1<3x”;②已知p,q为两个命题,若“p∨q”为假命题,则“”为真命题;③“a>2”是“a>5”的充分不必要条件;④“若xy=0,则x=0且y=0”的逆否命题为真命题.其中所有真命题的序号是________.14.已知双曲线的两条渐近线方程为,若顶点到渐近线的距离为1,则双曲线方程为.15.设,若关于的方程有实数解,则实数的取值范围_____.16.抛物线的焦点到准线的距离为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图所示,四棱柱中,底面为梯形,,,,,,.(1)求证:;(2)若平面平面,求二面角的余弦值.18.(12分)为了保障全国第四次经济普查顺利进行,国家统计局从东部选择江苏,从中部选择河北、湖北,从西部选择宁夏,从直辖市中选择重庆作为国家综合试点地区,然后再逐级确定普查区域,直到基层的普查小区,在普查过程中首先要进行宣传培训,然后确定对象,最后入户登记,由于种种情况可能会导致入户登记不够顺利,这为正式普查提供了宝贵的试点经验,在某普查小区,共有50家企事业单位,150家个体经营户,普查情况如下表所示:普查对象类别顺利不顺利合计企事业单位401050个体经营户10050150合计14060200(1)写出选择5个国家综合试点地区采用的抽样方法;(2)根据列联表判断是否有的把握认为“此普查小区的入户登记是否顺利与普查对象的类别有关”;(3)以该小区的个体经营户为样本,频率作为概率,从全国个体经营户中随机选择3家作为普查对象,入户登记顺利的对象数记为,写出的分布列,并求的期望值.附:0.100.0100.0012.7066.63510.82819.(12分)在平面直角坐标系中,为直线上动点,过点作抛物线:的两条切线,,切点分别为,,为的中点.(1)证明:轴;(2)直线是否恒过定点?若是,求出这个定点的坐标;若不是,请说明理由.20.(12分)在中,、、的对应边分别为、、,已知,,.(1)求;(2)设为中点,求的长.21.(12分)已知;.(1)若为真命题,求实数的取值范围;(2)若为真命题且为假命题,求实数的取值范围.22.(10分)已知函数,它的导函数为.(1)当时,求的零点;(2)当时,证明:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
利用复数相等的条件求得,,则答案可求.【详解】由,得,.对应的点的坐标为,,.故选:.本题考查复数的代数表示法及其几何意义,考查复数相等的条件,是基础题.2.C【解析】
设,,则,,相减得到,解得答案.【详解】设,,设直线斜率为,则,,相减得到:,的中点为,即,故,直线的方程为:.故选:.本题考查了椭圆内点差法求直线方程,意在考查学生的计算能力和应用能力.3.C【解析】
根据基本几何体的三视图确定.【详解】正方体的三个三视图都是相等的正方形,球的三个三视图都是相等的圆,圆锥的三个三视图有一个是圆,另外两个是全等的等腰三角形,长宽高互不相等的长方体的三视图是三个两两不全等的矩形.故选:C.本题考查基本几何体的三视图,掌握基本几何体的三视图是解题关键.4.C【解析】
把已知等式变形,再由复数代数形式的乘除运算化简得答案.【详解】由(1+i)z=|3+4i|,得z,∴z的虚部为.故选C.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.5.D【解析】
先用公差表示出,结合等比数列求出.【详解】,因为成等比数列,所以,解得.本题主要考查等差数列的通项公式.属于简单题,化归基本量,寻求等量关系是求解的关键.6.B【解析】
根据题意分析的图像关于直线对称,即可得到的单调区间,利用对称性以及单调性即可得到的取值范围。【详解】根据题意,函数满足是偶函数,则函数的图像关于直线对称,若函数在上单调递减,则在上递增,所以要使,则有,变形可得,解可得:或,即的取值范围为;故选:B.本题考查偶函数的性质,以及函数单调性的应用,有一定综合性,属于中档题。7.C【解析】
画出函数和的图像,和均关于点中心对称,计算得到答案.【详解】,验证知不成立,故,画出函数和的图像,易知:和均关于点中心对称,图像共有8个交点,故所有解之和等于.故选:.本题考查了方程解的问题,意在考查学生的计算能力和应用能力,确定函数关于点中心对称是解题的关键.8.D【解析】
根据,得到,即,由等比数列的定义知数列是等比数列,然后再利用前n项和公式求.【详解】因为,所以,所以,所以数列是等比数列,又因为,所以,.故选:D本题主要考查等比数列的定义及等比数列的前n项和公式,还考查了运算求解的能力,属于中档题.9.B【解析】
根据随机数表法的抽样方法,确定选出来的第5个个体的编号.【详解】随机数表第1行的第4列和第5列数字为4和6,所以从这两个数字开始,由左向右依次选取两个数字如下46,64,42,16,60,65,80,56,26,16,55,43,50,24,23,54,89,63,21,…其中落在编号01,02,…,39,40内的有:16,26,16,24,23,21,…依次不重复的第5个编号为21.故选:B本小题主要考查随机数表法进行抽样,属于基础题.10.C【解析】
根据循环结构的程序框图,带入依次计算可得输出为25时的值,进而得判断框内容.【详解】根据循环程序框图可知,则,,,,,此时输出,因而不符合条件框的内容,但符合条件框内容,结合选项可知C为正确选项,故选:C.本题考查了循环结构程序框图的简单应用,完善程序框图,属于基础题.11.C【解析】
根据平面向量基本定理,用来表示,然后利用数量积公式,简单计算,可得结果.【详解】由题可知:点E是中点,点F是中点,所以又所以则故选:C本题考查平面向量基本定理以及数量积公式,掌握公式,细心观察,属基础题.12.B【解析】
求出导函数,确定函数的单调性,确定函数的最值,根据零点存在定理可确定参数范围.【详解】,当时,,单调递增,当时,,单调递减,∴在上只有一个极大值也是最大值,显然时,,时,,因此要使函数有两个零点,则,∴.故选:B.本题考查函数的零点,考查用导数研究函数的最值,根据零点存在定理确定参数范围.二、填空题:本题共4小题,每小题5分,共20分。13.②【解析】命题“∃x∈R,x2+1>3x”的否定是“∀x∈R,x2+1≤3x”,故①错误;“p∨q”为假命题说明p假q假,则(p)∧(q)为真命题,故②正确;a>5⇒a>2,但a>2⇒/a>5,故“a>2”是“a>5”的必要不充分条件,故③错误;因为“若xy=0,则x=0或y=0”,所以原命题为假命题,故其逆否命题也为假命题,故④错误.14.【解析】由已知,即,取双曲线顶点及渐近线,则顶点到该渐近线的距离为,由题可知,所以,则所求双曲线方程为.15.【解析】
先求出,从而得函数在区间上为增函数;在区间为减函数.即可得的最大值为,令,得函数取得最小值,由有实数解,,进而得实数的取值范围.【详解】解:,当时,;当时,;函数在区间上为增函数;在区间为减函数.所以的最大值为,令,所以当时,函数取得最小值,又因为方程有实数解,那么,即,所以实数的取值范围是:.故答案为:本题考查了函数的单调性,函数的最值问题,导数的应用,属于中档题.16.【解析】试题分析:由题意得,因为抛物线,即,即焦点到准线的距离为.考点:抛物线的性质.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)证明见解析(2)【解析】
(1)取中点为,连接,,,,根据线段关系可证明为等边三角形,即可得;由为等边三角形,可得,从而由线面垂直判断定理可证明平面,即可证明.(2)以为原点,,,为,,轴建立空间直角坐标系,写出各个点的坐标,并求得平面和平面的法向量,即可由法向量法求得二面角的余弦值.【详解】(1)证明:取中点为,连接,,,如下图所示:因为,,,所以,故为等边三角形,则.连接,因为,,所以为等边三角形,则.又,所以平面.因为平面,所以.(2)由(1)知,因为平面平面,平面,所以平面,以为原点,,,为,,轴建立如图所示的空间直角坐标系,易求,则,,,,则,,.设平面的法向量,则即令,则,,故.设平面的法向量,则则令,则,,故,所以.由图可知,二面角为钝二面角角,所以二面角的余弦值为.本题考查线面垂直的判定,由线面垂直判定线线垂直,由空间向量法求平面与平面形成二面角的大小,属于中档题.18.(1)分层抽样,简单随机抽样(抽签亦可)(2)有(3)分布列见解析,【解析】
(1)根据题意可以选用分层抽样法,或者简单随机抽样法.(2)由已知条件代入公式计算出结果,进而可以得到结果.(3)由已知条件计算出的分布列,进而求出的数学期望.【详解】(1)分层抽样,简单随机抽样(抽签亦可).(2)将列联表中的数据代入公式计算得所以有的把握认为“此普查小区的入户登记是否顺利与普查对象的类别有关”.(3)以频率作为概率,随机选择1家个体经营户作为普查对象,入户登记顺利的概率为.可取0,1,2,3,计算可得的分布列为:0123本题考查了运用数学模型解答实际生活问题,运用合理的抽样方法,计算以及数据的分布列和数学期望,需要正确运用公式进行求解,本题属于常考题型,需要掌握解题方法.19.(1)见解析(2)直线过定点.【解析】
(1)设出两点的坐标,利用导数求得切线的方程,设出点坐标并代入切线的方程,同理将点坐标代入切线的方程,利用韦达定理求得线段中点的横坐标,由此判断出轴.(2)求得点的纵坐标,由此求得点坐标,求得直线的斜率,由此求得直线的方程,化简后可得直线过定点.【详解】(1)设切点,,,∴切线的斜率为,切线:,设,则有,化简得,同理可的.∴,是方程的两根,∴,,,∴轴.(2)∵,∴.∵,∴直线:,即,∴直线过定点.本小题主要考查直线和抛物线的位置关系,考查直线过定点问题,考查化归与转化的数学思想方法,属于中档题.20.(1);(2).【解析】
(1)直接根据特殊角的三角函数值求出,结合正弦定理求出;(2)结合第一问的结论以及余弦定理即可求解.【详解】解:(1)∵,且,∴,由正弦定理,∴,∵∴锐角,∴(2)∵,∴∴∴在中,由余弦定理得∴本题主要考查了正弦定理和余弦定理的运用.考查了学生对三角函数基础知识的综合运用.21.(1)(2)或【解析】
(1)根据为真命题列出不等式,进而求得实数的取值范围;(2)应用复合命题真假判定的口诀:真“非”假,假“非”真,一真“或”为真,两真“且”才真.【详解】(1),且,解得所以当为真命题时,实数的取值范围是.(2)由,可得,又∵当时,,.∵当为真命题,且为假命题时,∴与的真假性相同,当假假时,有,解得;当真真时,有,解得;故当为真命题且为假命题时,可得或.本题主要考查结合不等式的含有量词的命题的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生物标志物在药物临床试验中的临床实践
- 生物支架的生物活性因子负载策略
- 生物化学代谢通路图示化教学策略
- 生物制品稳定性试验监管要求与合规要点
- 生物制剂临床试验中细胞因子风暴监测策略-1
- 生物制剂TDM指导IBD患者个体化给药方案制定
- 航空地勤岗技能考试大纲及试题解析
- 汽车行业招聘专员面试题及答案
- 网络直播平台的项目总监应聘题目详解
- 导电性能测定仪建设项目可行性分析报告(总投资7000万元)
- 2025年沈阳华晨专用车有限公司公开招聘笔试历年参考题库附带答案详解
- 2026(苏教版)数学五上期末复习大全(知识梳理+易错题+压轴题+模拟卷)
- 2024广东广州市海珠区琶洲街道招聘雇员(协管员)5人 备考题库带答案解析
- 蓄电池安全管理课件
- 建筑业项目经理目标达成度考核表
- 2025广东肇庆四会市建筑安装工程有限公司招聘工作人员考试参考题库带答案解析
- 第五单元国乐飘香(一)《二泉映月》课件人音版(简谱)初中音乐八年级上册
- 简约物业交接班管理制度
- 收购摩托驾校协议书
- 2025年浙江省中考数学试卷(含答案)
- GB/T 16294-2025医药工业洁净室(区)沉降菌的测试方法
评论
0/150
提交评论