《中心对称》教案_第1页
《中心对称》教案_第2页
《中心对称》教案_第3页
《中心对称》教案_第4页
《中心对称》教案_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

《中心对称》教案教学目标教学目标:理解中心对称的定义;会画一个简单几何图形关于某一点对称的图形,提高画图能力;通过操作、观察、归纳中心对称的性质,经历由具体到抽象认识问题的过程,渗透从一般到特殊的研究问题的方法.教学重点:中心对称的概念与性质.教学难点:中心对称的性质的探索.教学过程时间教学环节主要师生活动2min复习回顾1、旋转:把一个平面图形绕着平面内某一点O旋转一个角度,叫做图形的旋转.2、旋转的性质:对应点到旋转中心的距离相等.对应点与旋转中心所连线段的夹角等于旋转角.旋转前、后的图形全等.3、画出简单平面图形旋转后的图形:要明确旋转中心、旋转方向、旋转角度.2min引入新知前面我们研究了旋转及其性质,现在研究一类特殊的旋转—中心对称及其性质.问题1(1)如图1,把其中一个图案绕点O旋转180°,你有什么发现?(2)如图2,线段AC,BD相较于点O,OA=OC,OB=OD.把△OCD绕点O旋转180°,你有什么发现?图1图1图210min探究新知1.了解中心对称的概念问题2你能说说上述两个旋转的共同点吗?师生共同归纳得出中心对称的定义:把一个图形绕着某一点旋转180°,如果它能够和另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心(简称中心).这两个图形在旋转后能重合的对应点叫做关于对称中心的对称点.例如,图2中△OCD和△OAB关于点O对称,点C与点A是关于点O的对称点.问题3图2中你能指出对称中心吗?你能指出其它的对称点吗?问题4中心对称与旋转的联系与区别是什么?联系:中心对称和旋转都是绕着某一点进行旋转后两个图形重合;区别:中心对称的旋转角都是180°,旋转的旋转角度不固定,中心对称是特殊的旋转.探索中心对称的性质问题5中心对称是特殊的旋转,它会有哪些性质?做一做如下图3,三角尺的一个顶点是O,以点O为中心旋转三角尺,可以画出关于点O中心对称的两个三角形:第一步,画出△ABC,见图3;第二步,以三角尺的一个顶点O为中心,把三角尺旋转180°,画出△A’B’C’,见图4;第三步,移开三角尺,见图5.图3图3图4图5图5利用画好的图形,分别连接对应点AA’,BB’,CC’.思考:(1)点O在线段AA’上吗?如果在,在什么位置?△ABC与△A’B’C’有什么关系?你能从以上过程中总结出中心对称的性质吗?归纳中心对称的性质:关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;关于中心对称的两个图形是全等形.10min巩固落实3.中心对称的作图例(1)如图6,选择点O为对称中心,画出点A关于点O的对称点A’;(2)如图7,选择点O为对称中心,画出与△ABC关于点O对称的△A’B’C’.图6图6图8图图7图9解:(1)如图7,作射线AO,在射线AO上截取OA’=OA,则点A’即为所求.思考:为什么这样作出的点A’就是A关于点O的对称点?怎样画出△ABC关于点O对称的△A’B’C’?(2)如图9,分别作出点A,点B,点C关于点O的对称点A’,B’,C’依次连接A'B',B'C',C'A',就可得到与△ABC关于点O对称的△A'B'C'.变式1:如图10,选择点O为对称中心,画出与△ABC关于点O对称的△A'B'C'.变式2:如图12,选择点O为对称中心,画出与△ABC关于点O对称的△A'B'C'.图14(3)如图14,已知△ABC与△DEF中心对称,点A和点D是对称点,画出对称中心O图14利用中心对称的性质可知:对称点所连线段都经过对称中心,而且被对称中心所平分.所以可以连接一对对应点,取这条线段的中点;也可以分别连接两对对称点,两条线段的交点就是对称中心.4.练习巩固图17如图17,△ABC与△A′B′C′关于某一个点成中心对称,点A,B的对称点分别为点A′和B′.请作出△A′B′C′.

图171min课堂小结本节课我们一起认识了中心对称,学习了:(1)中心对称的概念;(2)中心对称的性质;(3)会画一个图形关于某一点对称的图形;会确定一个中心对称的对称中心;同时经历了由具体到抽象认知问题的过程,也体会了从一般到特殊的研究问题的方法,1min布置作业请同学们在作业本上完成下面两道课后作业:1.分别画出下列图形关于点O对称的图形.2.图中的两个四边形关于某点对称,找出它们的对称中心.知能演练提升一、能力提升1.如图所示的4组图形中,左边图形与右边图形成中心对称的有()A.1组 B.2组 C.3组 D.4组2.如图,△ABC和△AB'C'成中心对称,点A为对称中心,若∠C=90°,∠B=30°,AC=1,则BB'的长为()A.4 B.33 C.233 3.如图,若甲、乙关于点O成中心对称,则乙图中不符合题意的一块是()4.如图,△ABC与△DEF关于点O成中心对称,则图中关于点O成中心对称的三角形还有.

5.如图,在等腰三角形ABC中,∠C=90°,BC=2cm,如果以AC的中点O为旋转中心,将这个三角形旋转180°,点B落在点B'处,那么点B'与点B的距离为cm.

6.如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上一点,且PE∥BC,交AB于点E,PF∥CD,交AD于点F,则阴影部分的面积是.

7.如图,已知△ABC和点P,求作△A'B'C',使它关于点P与△ABC中心对称.8.下面是小亮同学做的练习.题目:“如图所示的两个四边形能否关于某一点成中心对称?若能,请你画出其对称中心.”解:连接BE,CF交于点O,则点O就是这两个四边形的对称中心,因此这两个四边形关于点O成中心对称.你认为小亮同学做得是否正确,谈谈你的做法.9.如图,跷跷板的支柱OC与地面垂直,点O是AB的中点,AB可以绕着点O上下转动.如果∠OCA=90°,当A端落地时,∠OAC=25°,问小孩玩跷跷板时:(1)在空中划过怎样的线?(2)横板上下可转动的最大角度(即∠A'OA)是多少?★10.如图是跳棋盘,其中格点上的黑色点为棋子,剩余的格点上没有棋子,我们约定跳棋游戏的规则是:把跳棋棋子在棋盘内沿直线隔着棋子对称跳行,跳行一次称为一步.已知点A为己方一枚棋子,欲将棋子A跳进对方区域(阴影部分的格点),则最少跳行多少步数?二、创新应用★11.任意剪一个三角形纸片,如图中的△ABC,设它的一个锐角为∠A,首先利用对折的方法得到高AN,然后按图中的方法分别将含有∠B,∠C的部分向里折,找出AB,AC的中点D,E,同时得到两条折痕DF,EG,分别沿折痕DF,EG剪下图中的三角形①②,并按图中箭头所指的方向分别旋转180°.(1)请问你能拼成一个什么样的四边形?并说明你的理由.(2)请你利用这个图形,证明三角形的面积公式:S=12×底×高

知能演练·提升一、能力提升1.C2.A3.C4.△BOC与△EOF,△AOC与△DOF5.25由题意易知BC=2cm,OC=1cm,在Rt△OBC中,根据勾股定理得OB=OC2+BC2=5(cm),6.2.57.解点P在边AC上,只需延长边CA,在直线AC上截取A'P=PA,C'P=PC;连接BP,并延长BP到点B',使B'P=PB;连接A'B',B'C'.△A'B'C'就是所求作的三角形.如图.8.解小亮的做法不正确.正确做法应为:如图,连接AH,DG,BE,CF,交于一点O,经测量CO=FO,BO=EO,AO=HO,DO=GO,所以四边形ABCD与四边形HEFG关于点O成中心对称.9.解(1)如图,在空中划过一段以O为圆心,以OA为半径的弧线.(2)∠AOA'=∠BOB'=∠BAC+∠A'B'C=25°+25°=50°.10.解本题考查了对中心对称的灵活运用,按照规则从点A到指定区域有2种方法,见图①,图②,各用3步,4步.若根据跳行规则——跳棋在棋盘内沿直线隔着棋子对称跳行,选择其他途径A点的棋子不能进入指定区域,故答案为3步.二、创新应用11.分析(1)根据图形的变换,确定出四边形HFGM的四个角的大小都是90°,从而确定四边形HFGM是矩形.(2)△BFD与△AHD成中心对称,△CGE与△AME成中心对称,所以△BFD≌△AHD,△CGE≌△AME.所以S△ABC=S矩形HFGM.解(1)拼成的四边形HFGM是矩形.理由如下:因为将含有∠B的部分向里折,所以BF=FN,DB=DN.所以DF⊥BN.所以∠DFB=∠DFN.又因

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论