版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省示范性高中2026届高一上数学期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.半径为,圆心角为弧度的扇形的面积为()A. B.C. D.2.已知函数为定义在上的偶函数,在上单调递减,并且,则实数的取值范围是()A. B.C. D.3.下列四组函数中,表示同一函数的一组是()A. B.C. D.4.已知矩形,,,将矩形沿对角线折成大小为的二面角,则折叠后形成的四面体的外接球的表面积是A. B.C. D.与的大小有关5.著名数学家、物理学家牛顿曾提出:物体在空气中冷却,如果物体的初始温度为,空气温度为,则分钟后物体的温度(单位:)满足:.若常数,空气温度为,某物体的温度从下降到,大约需要的时间为()(参考数据:)A.分钟 B.分钟C.分钟 D.分钟6.下列所给四个图象中,与所给3件事吻合最好的顺序为()(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再去上学;(2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速A.①②④ B.④②③C.①②③ D.④①②7.已知向量,,若与共线,则等于()A. B.C. D.8.函数中,自变量x的取值范围是()A. B.C.且 D.9.若∃x∈[0,3],使得不等式x2﹣2x+a≥0成立,则实数a的取值范围是()A.﹣3≤a≤0 B.a≥0C.a≥1 D.a≥﹣310.已知函数在上具有单调性,则k的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知点,点P是圆上任意一点,则面积的最大值是______.12.写出一个满足,且的函数的解析式__________13.在某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居民显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病例数计算,下列各个选项中,一定符合上述指标的是__________(填写序号)①平均数;②标准差;③平均数且极差小于或等于2;④平均数且标准差;⑤众数等于1且极差小于或等于414.已知函数,(1)______(2)若方程有4个实数根,则实数的取值范围是______15.已知集合A={2,log2m},B={m,n}(m,n∈R),且,则A∪B=___________.16.如图,矩形中,,,与交于点,过点作,垂足为,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,天津之眼,全称天津永乐桥摩天轮,是世界上唯一一个桥上瞰景摩天轮,是天津的地标之一.永乐桥分上下两层,上层桥面预留了一个长方形开口,供摩天轮轮盘穿过,摩天轮的直径为110米,外挂装48个透明座舱,在电力的驱动下逆时针匀速旋转,转一圈大约需要30分钟.现将某一个透明座舱视为摩天轮上的一个点,当点到达最高点时,距离下层桥面的高度为113米,点在最低点处开始计时.(1)试确定在时刻(单位:分钟)时点距离下层桥面的高度(单位:米);(2)若转动一周内某一个摩天轮透明座舱在上下两层桥面之间的运行时间大约为5分钟,问上层桥面距离下层桥面的高度约为多少米?18.已知全集,,.(1)当时,,;(2)若,求实数a的取值范围,19.已知函数(1)求f(x)的最小正周期及单调递减区间;(2)若f(x)在区间上的最小值为1,求m的最小值20.已知向量,,且,满足关系.(1)求向量,的数量积用k表示的解析式;(2)求向量与夹角的最大值.21.已知角终边上一点.(1)求的值;(2)求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由扇形面积公式计算【详解】由题意,故选:A2、D【解析】利用函数的奇偶性得到,再解不等式组即得解.【详解】解:由题得.因为在上单调递减,并且,所以,所以或.故选:D3、A【解析】判断两函数定义域与函数关系式是否一致即可;【详解】解:.和的定义域都是,对应关系也相同,是同一函数;的定义域为,的定义域为,,定义域不同,不是同一函数;的定义域为,的定义域为,定义域不同,不是同一函数;的定义域为,的定义域为或,定义域不同,不是同一函数故选:4、C【解析】由题意得,在二面角内的中点O到点A,B,C,D的距离相等,且为,所以点O即为外接球的球心,且球半径为,所以外接球的表面积为.选C5、D【解析】由已知条件得出,,,代入等式,求出即可得出结论.【详解】由题知,,,所以,,可得,所以,,.故选:D.6、D【解析】根据回家后,离家的距离又变为可判断(1);由途中遇到一次交通堵塞,可判断中间有一段函数值没有发生变化;由为了赶时间开始加速,可判断函数的图像上升的速度越来越快;【详解】离开家不久发现自己把作业本忘在家里,回到家里,这时离家的距离为,故应先选图像(4);途中遇到一次交通堵塞,这这段时间与家的距离必为一定值,故应选图像(1);后来为了赶时间开始加速,则可知图像上升的速度越来越快,故应选图像(2);故选:D【点睛】本题主要考查函数图象的识别,解题的关键是理解题干中表述的变化情况,属于基础题.7、A【解析】先求出,,再根据向量共线求解即可.【详解】由题得,因为与共线,.故选:A.【点睛】本题主要考查平面向量的坐标运算和向量共线的坐标表示,意在考查学生对这些知识的理解掌握水平,属于基础题.8、B【解析】根据二次根式的意义和分式的意义可得,解之即可.【详解】由题意知,,解得,即函数的定义域为.故选:B9、D【解析】等价于二次函数的最大值不小于零,即可求出答案.【详解】设,,使得不等式成立,须,即,或,解得.故选:D【点睛】本题考查特称命题成立求参数的问题,等价转化是解题的关键,属于基础题.10、C【解析】由函数,求得对称轴的方程为,结合题意,得到或,即可求解.【详解】由题意,函数,可得对称轴的方程为,要使得函数在上具有单调性,所以或,解得或故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由点可得直线AB的方程及的值,可得圆心到直线AB的距离d及P到直线AB的最大距离,可得面积的最大值是.【详解】解:直线AB的方程为,圆心到直线AB的距离,点P到直线AB的最大距离为.故面积的最大值是.【点睛】本题主要考查直线与圆的位置关系,点到直线的距离公式及两点间距离公式等,需综合运用所学知识求解.12、(答案不唯一)【解析】根据题意可知函数关于对称,写出一个关于对称函数,再检验满足即可.【详解】由,可知函数关于对称,所以,又,满足.所以函数的解析式为(答案不唯一).故答案为:(答案不唯一).13、③⑤【解析】按照平均数、极差、方差依次分析各序号即可.【详解】连续7天新增病例数:0,0,0,0,2,6,6,平均数是2<3,①错;连续7天新增病例数:6,6,6,6,6,6,6,标准差是0<2,②错;平均数且极差小于或等于2,单日最多增加4人,若有一日增加5人,其他天最少增加3人,不满足平均数,所以单日最多增加4人,③对;连续7天新增病例数:0,3,3,3,3,3,6,平均数是3且标准差小于2,④错;众数等于1且极差小于或等于4,最大数不会超过5,⑤对.故答案为:③⑤.14、①-2②.【解析】先计算出f(1),再根据给定的分段函数即可计算得解;令f(x)=t,结合二次函数f(x)性质,的图象,利用数形结合思想即可求解作答.【详解】(1)依题意,,则,所以;(2)函数的值域是,令,则方程在有两个不等实根,方程化为,因此,方程有4个实数根,等价于方程在有两个不等实根,即函数的图象与直线有两个不同的公共点,在同一坐标系内作出函数的图象与直线,而,如图,观察图象得,当时,函数与直线有两个不同公共点,所以实数的取值范围是.故答案为:-2;15、【解析】根据条件得到,解出,进而得到.【详解】因为,所以且,所以,解得:,则,,所以.故答案为:16、【解析】先求得,然后利用向量运算求得【详解】,,所以,.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)米.(2)米.【解析】(1)如图,建立平面直角坐标系,以为始边,为终边的角为,计算得到答案.(2)根据对称性,上层桥面距离下层桥面的高度为点在分钟时距离下层桥面的高度,计算得到答案.【详解】(1)如图,建立平面直角坐标系.由题可知在分钟内所转过的角为,因为点在最低点处开始计时,所以以为始边,为终边的角为,所以点的纵坐标为,则(),故在分钟时点距离下层桥面的高度为(米).(2)根据对称性,上层桥面距离下层桥面的高度为点在分钟时距离下层桥面的高度.当时,故上层桥面距离下层桥面的高度约为米.【点睛】本题考查了三角函数的应用,意在考查学生的应用能力.18、(1),或;(2)【解析】(1)解不等式,求出,进而求出与;(2)利用交集结果得到集合包含关系,进而求出实数a的取值范围.【小问1详解】,解得:,所以,当时,,所以,或;【小问2详解】因为,所以,要满足,所以实数a的取值范围是19、(1).,
(2)【解析】(1)直接利用三角函数关系式的恒等变换和正弦型函数的性质的应用求出结果(2)利用正弦型函数的性质的应用求出结果【详解】(1)由题意,函数,==,所以的最小正周期:由,解得即函数的单调递减区间是
(2)由(1)知,因为,所以要使f(x)在区间上的最小值为1,即在区间上的最小值为-1所以,即所以m的最小值为【点睛】本题考查了三角函数关系式的变换,正弦型函数的性质的应用,其中解答中熟练应用三角函数的图象与性质,准确运算是解答的关键,着重考查了运算能力和转换能力及思维能力,属于基础题型20、(1),(2)【解析】(1)化简即得;(2)设与的夹角为,求出,再求函数的最值得解.【详解】(1)由已知.,,,.(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酒店集团总经理招聘考试题目解析
- 房地产经纪人面试考核内容与技巧
- 轻型安全挂锁项目可行性研究报告(总投资17000万元)(70亩)
- 深度解析(2026)《GBT 19215.4-2017电气安装用电缆槽管系统 第2部分:特殊要求 第4节:辅助端 》
- 光伏模拟器项目可行性分析报告范文
- 汽车维修工面试问题与答案解析
- 技能培训师考试题库
- 深度解析(2026)《GBT 18948-2017内燃机冷却系统用橡胶软管和纯胶管 规范》
- 深度解析(2026)《GBT 18839.3-2002涂覆涂料前钢材表面处理 表面处理方法 手工和动力工具清理》
- 深度解析(2026)GBT 18778.1-2002产品几何量技术规范(GPS) 表面结构 轮廓法 具有复合加工特征的表面 第1部分滤波和一般测量条件
- 叩击排痰课件
- 复用医疗器械预处理课件
- 第五课 共同保卫伟大祖国 课件-《中华民族大团结》七年级全一册
- 车间安全生产奖惩制度
- 化工设备新员工培训课件
- 2025北师大版暑假八升九年级数学衔接讲义 第04讲 因式分解(思维导图+3知识点+8考点+复习提升)(原卷)
- 全面解读产后各种疼痛
- 文化创意产品设计及案例全套教学课件
- 2025年高考历史(北京卷)真题评析
- 奔驰GL350GL450GL550中文版说明书
- DB14-T34292025全域土地综合整治项目可行性研究报告编制规范
评论
0/150
提交评论