合肥660mw超临界燃煤机组deh系统_第1页
合肥660mw超临界燃煤机组deh系统_第2页
合肥660mw超临界燃煤机组deh系统_第3页
合肥660mw超临界燃煤机组deh系统_第4页
合肥660mw超临界燃煤机组deh系统_第5页
已阅读5页,还剩151页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

合肥发电厂DEH系统

第一章DEH控制系统概述

第一节概述

第二节基本功能

第三节DEH性能指标

第四节DEH系统

第二章执行机构

第一节调节型执行机构

第二节开关型执行机构

第三节执行机构改造要点

第四节高压调节阀操纵座的安装

第五节高压主汽阀操纵座的安装

第六节中压主汽阀操纵座的安装

第七节中压调节阀操纵座的安装

第八节限位开关的整定

第九节执行机构故障处理

第三章供油系统

第一节工作原理

第二节主要部件

第三节必备的监视仪表

第四节现场油管路安装总体要求

第五节油系统冲洗

第六节油系统启动

第七节油系统的调试

第八节油系统运行和维护

第九节油系统的检修

第十节油系统的电气控制

第四章液压遮断系统

第一节低压保护系统

第二节高压保护系统

第三节高、低压保护系统接口装置

第四节危急遮断

第五章DEH计算机控制系统

第一节DEH计算机控制硬件配置

第二节DEH专用卡件

第三节功率-频率电液调节系统的基本原理

第四节DEH系统控制功能

第六章汽机危急遮断系统

第一节ETS硬件结构

第二节ETS监视的参数及定值

第三节超速限制及超速保护

第四节ETS保护逻辑

第七章DEH操作说明

第一节引言

第二节DEH系统软件启动、登陆

第三节DEH系统硬件运行、试验

第四节DEH硬操盘紧急手动切换

第八章DEH系统试验

第一节调节阀阀位校验

第二节高、中压调门试验

第三节高、中压主汽门试验

第四节阀门活动试验及阀门严密性试验

第五节机组定速后试验

第六节喷油试验

第七节高压模块遮断试验

第八节机械、电气超速试验

第九节甩负荷试验

第一章DEH控制系统概述

第一节概述

我厂原125MW汽轮机控制采用的是低压油纯液调的控制方式,仅

在同步器和低压遮断回路中存在很少的电气回路,此种纯液调控制系统存在

着负荷适应性差、控制精度低、响应不够快、日常维护较复杂、自动化水平

低等等一系列的欠缺、随着电气技术的发展以及计算机技术可靠性的提高、

综合运算能力增强,在汽轮机的调节系统中又引进了功率、转速等反映汽轮

机运行状态的电信号,故可由计算机系统实现对汽轮机控制的处理和运算。

由于一般电气设备尚不能在短时间内产生很大的功率去开启或关闭调节阀,

故在汽轮机控制系统中仍保留有液压执行机构。汽轮机数字式电液控制系统

(DEH)即为计算机控制技术与液压控制技术结合的产物。由于采用了计算

机控制,使得汽轮机的控制方式可以灵活切换,控制的精度也有了很大的提

升余地,从而为提升整个机组的控制水平提供了基本保障。

DEH控制系统是采用数字计算机作为控制器,电信号通过电液转换机

构控制高压抗燃油的油压来驱动油动机,实现高、中压主汽门和调门的开

关。从而控制汽轮机的转速和负荷。称为汽轮机高压抗燃油纯电调控制系统。

DEH由电子计算器系统、电液转换器、高压抗燃油系统和高压油动机

四部分组成。

电子计算器系统采集汽轮机转速,汽轮机功率,电网的频率和ADS的发

电功率以及其它模拟量信号,将模拟量信号转变成数字量进行综合运算放

大以后,输出控制信号。由于一般的电气设备尚不具备快速开关主汽门和调

门的能力。所以必须将电气控制信号,通过电液转换机构转换成高压油的油

压,去推动油动机进而操作主汽门和调门,在油动机动作以后,经位移变送

器将调门的位移信号转换成电信号,反馈到电子计算器与输出信号平衡。使

电液转换机构复位,油动机停止动作。

第一节基本功能

2.1抗燃油主油泵遥控启、停及联锁功能

司机可遥控操作抗燃油主油泵启动或停止,若油压低于11.2MPa可

自动联启另一台油泵。

2.2挂闸功能

司机可遥控使液压系统自动完成挂闸过程

2.3开主汽门

在汽机控闸后,司机按运行按钮,即可将高中压主汽门全开。

2.4升速

司机设置目标转速后,机组可自动沿当前热状态对应的经验曲线完

成升速暖机过临界直到3000rpm定速°在升速过程中,司机可

通过修改目标转速,升速率来控制机组的升速过程。

2.5自动同期

DEH可与自动同期装置相配合,自动将机组带到同步转速。

2.6并网带初负荷

发电机并网后,DEH自动增加给定,使发电机自动带上初负荷避免

出现逆功率。

2.7升负荷

机组并网后,司机可根据需要采用阀控方式,功控方式,压控方式

或CCS方式控制机组,与锅炉控制系统配合完成定一滑一定升

负荷过程。

2.8阀控方式

司机通过设置目标阀位直接控制调门开度,DEH维持阀位不度。机

组负荷随蒸汽参数变化而变化。

2.9功控方式

司机通过设置目标功率来控制机组负荷,DEH维持机组负荷不变。

2.10压控方式

司机通过设置目标压力来控制机前压力,DEH维持主汽压力不变

2.11CCS方式

在CCS方式下,DEH接受CCS主控器来的阀位给定信号后,直接控

制调门开度。DEH与CCS主控器配合可完成机跟炉,炉跟机以

及机炉协调的各种功能。

2.12一次调频

DEH具有一次调频功能,调频特性(不等率死区)可在线修改。

2.13阀门管理

为兼顾机组的热经济性及寿命消耗两方面因素,司机可根据需要方

便地选择单阀方式或顺序阀方式运行,顺序阀方式时考虑了合

理的重叠度。

2.14负荷阀位限制

DEH可自动将负荷限制在高低限以内,DEH可自动将阀位限制在限

定值以下。

2.15主汽压力低限制

当主汽压力低于限制值时,DEH自动减少阀位值,使主汽压力回升。

2.16快卸负荷

DEH备有快、中、慢3挡快卸负荷,可对应不同的故障,当快卸动

作时,DEH按对应的速率将负荷减到对应值。

2.17假并网试验

DEH收到假并网试验隔离刀闸断开信号后,可自动配合电气完成假

并网试验。

2.18喷油试验

司机可通过CRT画面操作,分别对1#、2#飞环进行喷油试验以防

止其卡涩。

2.19超速试验

司机可通过CRT画面操作,提升转速使超速保护动作分别检查1#、

2#飞环及电气超速保护的动作转速。在做机械超速试验时,

DEH电气超速保护的动作值自动由33()()rpm改为3390rpm,作

为后备超速保护使用。

2.20阀门活动试验

司机可通过CRT画面操作,分别对各主汽门及中压调门进行部分行

程活动,以防止其卡涩。

2.21阀门严密性试验

司机可通过CRT画面操作,分别对调门、主汽门进行严密性试验,

DEH可自动记录惰走时间。

2.22高压遮断试验

司机可通过CRT画面操作,在线检查高压遮断模块工作是否正常。

2.23紧急手动

DEH通讯出现故障时,自动转为紧急手动状态,司机可按硬操盘的

调门增减按钮,直接通过伺服板控制调门开度。

2.24低真空限制

凝汽器真空降低到规定值时,指挥阀位控制回路减负荷。

2.25103超速保护

发电机甩负荷时,瞬间关闭高、中压调门,保证汽轮机转速在正常的

范围内°

2.26110超速保护

2.27当其检测到机组转速达到110%额定转速时,发出电气停机

信号使高压遮断电磁阀和低压遮断电磁阀及油动机上的遮断电磁阀

动作,泄掉保安油,遮断机组进汽。同时关闭抽汽逆止门,以及发出

跳发电机油开关的信号。

2.28摩擦检查

第三节DEH技术指标及设计原则

DEH技术指标

☆转速控制范围40—3600rpm

☆转速控制精度士1rpm

☆负荷控制范围0-110%

☆负荷控制精度±0.625MW

☆主汽压力控制精度±0.1Mpa

☆一次调频不等率3—6%在线连续可调

☆一次调频死区0—30rpm在线连续可调

☆控制系统迟缓率<0.06%No

☆油动机快关时间W0.2秒,设有缓冲区以减小阀门冲击。

☆甩全负荷最大飞升转速W7%

第四节DEH系统

我厂#3机组DEH系统,液压部套采用东方汽轮机厂的高压抗燃油系统,

而与之配套的电子控制部分使用的是和利时公司的HS2000-MACS分散控

制系统。

因我厂#3机组DCS系统使用的也是HS2000-MACS系统,故我们

采用了DEH与DCS一体化的设计,将DEH与DCS系统融为一个整体,DCS

与DEH共用一个工程师站和打印站,连接在同一系统网络上,任一DCS操

作员站均可转为DEH操作员站,DEH操作员站也可对DCS系统进行操作,

从这些方面来看,我们可将DEH控制系统看作整个DCS系统的一个子系

统。

DEH可以分成电子控制部分和液压控制部分。两部分之间通过电液伺

服阀连接。电子控制部分由一个现场控制站和一个扩展柜及一个操作员站组

成。现场控制站有两个冗余的主控单元及I/O输入输出模件和三块测速模件

及电源模件。扩展柜主要是六个伺服模件、ETSPLC和新型逻辑控制板及

电源模件组。液压部套主要由电液转换器,高压抗燃油系统,执行机构,高、

低遮断系统组成。

高压抗燃油系统,由两台柱塞变量泵、油箱、滤油器、冷油器、蓄能器

及必要的监视仪表组成。形成一个独立的封闭的高压油源装置提供驱动油。

执行机构、由四个高、中压主汽门执行机构及六个高、中压调门执行机

构组成。每个阀门都有一套独立的高压阻燃油驱动机构。调节阀门的非线性

可由电子系统进行自动补偿。

完成对汽门的关闭和开启,调门的开大和关小。

高、低压遮断系统由高压遮断系统,低压遮断系统及隔膜阀三部分组成。完

成汽轮机在危急工况的遮断。

cvi

位CV2

CV3

CV4

TCVI

ICV2

快关调门

油开关缺同

&

Ji时2s

第二章执行机构

电一液伺服执行机构是DEH控制系统的重要组成部分之一,本系统有

10只执行机构,分别控制4个高压调节汽阀,2个中压调节阀,2个高压主汽

门和2个中压主汽门c

执行机构的油缸,属单侧进油的油缸,弹簧复位式。其开启由抗燃油压

力来驱动,而关闭是靠操纵座上的弹簧力V空载时遮断关闭时间常数为0.15

秒。液压油缸与一个控制块连接,在这个控制块上装有快速卸荷阀、逆止阀

和伺服阀。

另外,在油动机快速关闭时,为了使蒸汽阀碟与阀座的冲击应力保持在

允许的范围内,在油动机活塞尾部采用液压缓冲装置,可以将动能累积的主

要部分在冲击发生前、动作的最后瞬间转变为流体的能量。

按执行机构的作月可以分成两种不同类型的执行机构。即开关型执行机

构(用于高中压主汽门)和调节型执行机构(用于高中压调门)。

第一节调节型执行机构

调节型执行机构,可以将汽阀控制在任意的中间位置上,成比例地调节

进汽量以适应需要。

经计算机处理后的欲开大或者关小汽阀的电气信号经过伺服放大器放大后,

在电液转换器一伺服阀中将电气信号转换成液压信号,使伺服阀主阀移动,

并将液压信号放大后控制高压油的通道,使高压油进入油动机活塞下腔,油

动机活塞向上移动,经杠杆带动汽阀使之启动,或者是使压力油自活塞下腔

泄出,借弹簧力使活塞下移关闭汽阀。当油动机活塞移动时,同时带动两个

线性位移传感器,将油动机活塞的机械位移转换成电气信号,作为负反馈信

号与前面计算机处理送来的信号相加,由于两者的极性相反,实际上是相减,

只有在原输入信号与反馈信号相加后,使输入伺服放大器的信号为零后,这

时伺服阀的阀芯回到中间位置,不再有高压油通向油动机下腔或使压力油

自油动机下腔泄出,此时汽阀便停止移动,停留在一个新的工作位置。如图

2—1所示

1.1调节门的快关(以#1高压调门CV1为例)

当高压安全油失压时,卸荷阀在活塞下腔室油压的作用下打开,油动机

活塞下腔室压力油通过卸荷阀向油动机活塞上腔转移,多余的油液则通过

单向阀回油箱,阀门操纵座在弹簧紧力和蒸汽力的作用下迅速关闭调节汽

门。

当DEH接到各种电气遮断信号后,发出指令使#1高压调节汽门遮断电磁

阀(12YV)带电动作,泄掉#1高压调节汽门卸荷阀DDV1的上腔室油玉,卸

荷阀在活塞下腔室油压作用下打开。

油动机活塞下腔室压力油通过卸荷阀向油动机活塞上腔转移,多余的油液

则通过单向阀回油箱,阀门操纵座在弹簧紧力和蒸汽力的作用下迅速关闭

调节汽门。在弹簧力和蒸汽力的作用下快速关闭油动机的同时,伺服阀与油

动机活塞下腔室相连的排油口也打开接通排油,作为油动机快关的辅助手

段。当单个阀门需作快关试验时,只需使遮断电磁阀(12YV)带电,油动机

和阀门在操纵座弹簧紧力和蒸汽力作用下迅速关闭。

1.2调节型执行机构的主要部件

调节型执行机构由油缸卸荷阀、遮断电磁阀、逆止阀、截止阀、节流孔、

位移变送器、集成块及滤网组成。如图2—2所示

1.2.1截止阀

高压油经过此阀供到伺服阀去操作油动机,关闭截止阀便切断高压油

路,使得在汽轮机运行条件下可以停用此路汽阀,以便更换滤网、检修或伺

服阀、卸荷阀和油动机等,该阀安装在液压块上。

1.2.2高压滤油器

为了保证经过伺服阀的油的清洁度,以保证阀中的节流孔,喷嘴和滑阀能正

常改造,所有进入伺服阀的高压油均先经过一个滤油器,滤油器主要由滤芯

阀门、差压开关、差压表和集成块组成,过滤精度为10微米。在正常工作

状态条件下,滤网要求每6个月更换一次,高压滤油器前后压差达O.35MPa

时,差压开关对外发讯,表示需要更换滤芯,滤芯可在线进行更换。

1.2.3伺服阀

伺服阀是一个力矩马达和两级液压放大及机械反馈系统所组成。如图2

-3所示。第一级液压放大是双喷咀和挡板系统;第一级放大是滑阀系统,其

原理如下:

当有电气信号由伺服放大器输入时,则力矩马达中的电磁铁间的衔铁上的

线圈中就有电流通过,并产生一磁场,在两旁的磁铁作用下,产生一

图2—2高压调节阀油动机系统图

图2—3伺服阀机构图

旋转力矩,使衔铁旋转,同时带动与之相连的挡板转动,此挡板伸到两

个喷咀中间。在正常稳定工况时,挡板两侧与喷嘴的距离相等,使两侧喷咀

的泄油面积相等,则喷咀两侧的油压相等。当有电气信号输入,街铁带动挡

板转动时,则挡板移近一只喷咀,使这只喷咀的泄油面积变小,流量变小,

喷咀前的油压变高。而对侧的喷咀与挡板门的电离变大,泄油量增大,使喷

口前的压力变低,这样就将原来的电气信号转变为力矩而产生机械位移信

号,再转变为油压信号,并通过喷咀挡板系统将信号放大。挡板两侧的喷咀

前油压,与下部滑阀的两个腔室相通,因此,当两个喷咀前的油压不等时,

则滑阀两端的油压不相等,滑阀在压差作用下产生移动,滑阀上的凸肩所控

制的油口开启或关闭,便可以控制高压油由此通向汕动机活塞下腔,以开大

汽阀的开度,或者将活塞下腔通向回油,使活塞下腔的油泄去,由弹簧力关

小或关闭汽门。为了增加调节系统的稳定性,在伺服阀中设置了反馈弹簧。

另外在伺服阀调整时有一定的机械零偏,以便在运行中突然发生断电或失

去电信号时,借机械力量最后使滑阀偏移一侧,使汽阀关闭。

MOOGDDV-633阀

以上讲的是通用的MOOG伺服阀,这种伺服阀由于有二级液压放大,

而喷嘴液压放大的喷口直径非常小,非常容易堵死,是EH系统最薄弱的环

节。在我们调查中,大家都感到原MOOG阀是DEH系统最迫切需要解决的

问题。

我们这次系统中采用的是新的一种MOOG阀,称为DDV-633阀。这

种阀主要特点是采用大功率的永磁线性马达,取消了喷嘴液压放大。用永磁

线性马达直接带动滑阀移动。这样克服了原MOOG阀的致命弱点。如图2

-5所示。

对33阀采用置中弹簧代替原来的机械偏置使动作更灵敏可靠。如图2

—4所示。

D633增加阀杆位移的LVDT位置发送器代替原来的反馈弹簧。使阀杆

位移有更好的静态和动态响应。下面具体介绍D633阀。

SECTIONALVIEWOFDDV

NdlAdjustCuwPtuj

图2—4D633伺服阀结构图

CableHolePermanentMagnetsCenteringSprings

图2—5永磁驱动线性马达结构图

图2—6D633阀

>MOOGDDV阀特点:

>低渗漏。没有导引台油流。消除了导引台内部渗漏,从而节约了能量,

特别是在需要多阀的应用中。

>轴驱动力强。永磁线性驱动马达可提供比螺形线圈强两倍的驱动力,

并保证长期稳定可靠的工作性能。

>动态特性好。由于线性驱动马达的高自然频率(25Hz),此阀动态特

性得以提高,且其动态特性与系统油压无关。

>低迟滞和高精度带来了优秀的系统重视性。

>当电源消失、耳缆断线或紧急停止时,阀轴回到由弹簧确定的中心位

置,不会造成负荷移位。

>优良的控制性能。DDV阀有很高的内部轴位闭环增益,这种高闭环

增益提供了非常好的静态和动态响应,从而提供了优良的控制和系统表现。

>可测量阀轴位置VDDV阀有与实际阀轴位置成比例的信号输出,可

提供系统的工作信息,提高系统的维护性能。

>在故障时自动置中。DDV阀有一弹簧置中设计,可消除在单螺形线

圈设计中的“短暂流量”问题。

>满足IP65防护等级。

>低电源消耗。线性驱动马达比螺形线圈消耗电流小。DDV阀在零位

时,消耗电流很小,以致于电流为零。

>电子零点校正可补偿负荷漂移。

D633直接驱动比例伺服阀:

MOOGD633,D634DDV阀是集成有电子阀轴位置反馈的闭环比例伺服

阀。

一个永磁线性驱动马达可向两个方向驱动通过弹簧置于中心的阀

轴,这相对于只有一个驱动方向的螺形线圈比例伺服阀是一个进步。在阀内

集成有闭环阀轴位置电子转换装置和脉宽调制(PWM)驱动装置。

由于集成有闭环的电子轴位反馈和强力的线性驱动马达,此阀提供

了完美的控制阀解决方案,带来了优良的系统表现。

安装有驱动线性驱动马达的脉定宽调制(PWM)电路和阀轴位置反馈

电路的电路板安装于阀身上满足IP65防护等级的小室中。

D633阀集成的电子电路,在用户的计算机系统和比例伺服阀间提供了

一个简单的接口。

如果电源失去,阀轴回到由弹簧确定的中心位置,不会造成负荷移位。

D633阀操作:

代表期望轴位置的给定信号输入至集成电子部件,电子部件由此产生

PWM电流给线性驱动马达线圈,驱动阀轴移动。一振荡器激励阀轴位置发

送器(LVDT),产生与阀轴位置成比例的电子信号。经解调的轴位信号再

与给定信号相比较,产生轴位偏差信号,以此控制驱动马达。阀轴移动至指

定位置的同时.,轴位偏差减少至零。最终的轴位成比例于给定信号。

通过阀的流量和压降:

通过阀的实际流量取决于阀轴位置和通过轴面时的压降。

在100%开度信号时(+10VDC=100%开度),额定压降下(APN=

5()()Psi)通过阀的流量为额定流量QNo在其他压降下,流量按照锐边孔洞

的平方根公式变化°

这种方法计算流量Q需在通过端口P,A,B,或T的流速小于100ft/S

的情况下。

永磁线性驱动马达操作:

线性驱动马达是一种永磁差动马达。永久磁铁提供部分所需磁力。对于

线性驱动马达,其所需电流明显小于同比的螺形线圈。线性驱动马达有一中

性的中间位置,由此可产生两个方向的驱动力。驱动力与电流成比例c

马达向外推动时,必须克服弹簧弹性带来的居中的力量和其他外力(像流体

力,脏污带来的摩擦力);而向中心位置推动时,则弹簧力可以帮助马达驱动,

提供了额外的轴驱动力,并减少了阀对脏污的敏感度。在弹簧置中的位置时,

线性驱动马达只需很小的电流。

完成同样的功能,比例螺形线圈系统需要两个线圈。这种做法增加了安装费

用,同时降低了阀的动态性能。另一种解决方法是使用一个螺形线圈对应一

个反向作用的弹簧。当线圈失电时,弹簧驱动阀轴向终点位置移动会经过一

个全开位置,这会导致不可控的负荷移动。

MountingPattern

ISO4401-03-03-0>94

00.3000.3000.30003000.13MSM5MSM50.16

x0.850501.190.851.6001.601.600130

y1.020.610.61。.如0.3S00.030.041.221.25

,}hxtXmuttebeMled.notsailedmviM

图2—7D633阀外形及接口图

1.2.4卸荷阀

卸荷阀,如图2—8所示。卸荷装在油动机液压块上,它主要作用是当机

组发生故障必须紧急停机时;在危急脱扣装置等动作使危急遮断油泄油失压

后,可使油动机活塞下腔的压力油经卸荷阀快速释放,这时不论伺服放大器

输出的信号大小,在阀门弹簧力作用下,均使阀门关闭。

在快速卸荷阀中有一个杯状滑阀4,在滑阔下部的腔室A与油动机活塞下的

高压油路相通。滑阀上部的复位油室一路经逆止阀与危急遮断油相通,逆止

门的作用是使危急遮断油压不可能直接进卸荷阀上部,由于正常的时候,危

急遮断油压略大于复位油压使逆止门关闭。只有危急遮断油压失去时,复位

油压才能通过逆止门泄压。而另一路是经一针阀1与油动机活塞上腔及回油

通道B相连。节流孔3是产生该阀的复位油的,一旦该节流孔堵死,则会产

生复位油降低或失压的现象,将会直接影响执行机构的正常运行。调试时,

该针阀靠调节手柄2完全压死在阀座上,仅在现场用于手动卸荷时才拧开此

针阀。调整针形阀控制的泄油,可以缓慢地改变卸荷阀中杯形滑阀上的油压,

使杯形滑阀上升,开启泄油口,改变油动机活塞下油缸的压力,改变调节阀

的开度。在正常运行时,滑阀上都的油压作用力加上弹簧力将大于滑阀下高

压油的作用力0杯状滑阀压在底座上,使高压油与油缸回油相通的油口关

闭。油缸活塞下腔的高压油建立。执行机构具备工作条件,阻尼孔7是对滑

阀起稳定作用,以免在系统油压发生变化时产生不利的振荡,粗滤网6可以

防治大的颗粒进入堵塞阻尼孔7o当汽轮机的转速超过额定值的3%或者汽

轮机保护动作时,将危急遮断油压泄压,复位油压顶开逆止阀泄油,使杯形

滑阀上油压剧烈下降,高压油推动杯形滑阀上移,这时,泄油孔被打开,使

油缸压力油失压,则调节阀将在弹簧作用力下关闭,使汽轮机停止进汽,此

时电液转换器在任何位置都没关系。

1.2.5逆止阀

有两个逆止阀装在液压块中,一只是通向危急遮断油管路,该逆止阀的作用

是阻止危急遮断油母管上的油倒回油动机。另一只逆止阀是通向油母管,

该阀的作用是阻止回油管里的油倒流到油动机。当关闭油动机的隔离阀,便

可在线检修油动机的伺服阀、卸荷阀、换滤网等,而不影响其他汽阀正常工

作。

1.2.6线性差动变送器(LVTD)

为了将反映调节阀开度的油动机活塞位移变成电气信号,反馈到伺服放

大器前与计算机来的信号相比较,将两者的差值输入伺服放大器,动作电液

伺服阀和调节阀,只有调节阀的开度(位移)满足了调节信号的要求时,使

伺服放大器输入为零,则此时调节阀便达到新的稳定开度。

线性差动位移变送器由芯杆和外壳组成。在外壳中有三个线圈,一个是

中间交流电源的原线圈C另在中心点两侧各绕有二只副线圈,该两线圈反向

连接,故两副线圈的输出为两者输出电势之差值。在线圈中间的磁铁铁芯是

处于两副线圈的中间位置的,副线圈中的感应电势相等,输出等于零,当铁

芯与线圈间有相对移动时,如铁芯上移,则上半部副线圈中的电势较Y半部

的电势大,则输出电压是上半部的极性,副线圈输出为交流电动势,经过整

流、滤波后使变成表示铁芯与线圈相对位移的电气信号。

图2—1高压调节阀油动机工作原理图

图2—8快速卸荷阀结构图

图2—9中压调节门油动机系统图

在具体设备中,铁芯是固定不动的,外壳与线圈同杠杆与油动机活塞杆相连,

输出的电气信号便模拟了油动机的位移,也就是阀门的开度。

差动变送器在设计时,使其输出信号有一“凸轮效应”,当油动机活塞移动

到一定位置后,若再使调节阀开大的信号增大时,油动机位移使调节阀开度

增加很少,使进汽量增加得也很少,如机械液压传动中凸轮转到接近圆弧段

一样。这样油动机的行程不再是线性了,在最后,很少的开大信号就能使调

节阀开到最大。

1.2.7遮断电磁阀

>遮断电磁阀是二位电磁,安装在集成块上。当电磁阀带电动作是泄放

卸荷阀上部的复位油压,使下油缸中高压油迅速释放,调门迅速关

闭。在下列情况下电磁阀带电:

>在甩负荷情况下

>机组转速达到103%额定转速时

>汽机保护动作时

高、中压调门区别:高压调门油动机直接安装在操纵座阀盖上,直接拉

动调门阀杆;而中压调门是装在边上,油动机的位移通过杠杆来拉动阀杆。

第二节开关型执行机构

当汽轮机在运行中发生事故需要紧急停机时,安全油路失压,开关型执

行机构动作,使自动主汽门关闭,停止汽轮机进汽。

高、中压主汽阀油动机均两位控制方式控制阀门的开关。由限位开关指

示阀门的全开、全关及试验位置。高、中压主汽阀油动机的组成和工作原理

基本相同,现以高压主汽阀油动机为例加以说明。见图2—10、2—11、2-

12o

开关型执行机构白油缸、卸荷阀、遮断电磁阀、试验电磁阀、单向阀、

截止阀、行程开关、节流孔板及集成块等组成。

开关型执行机构和调节型执行机构不同之处是增加了试验电磁阀、节流

孔、行程开关,没有电液转换阀和位移变送器。

行程开关有0%、85%和100%三档。

试验电磁阀是用作阀门活动试验用。

1.主汽门的开启(以#1高压主汽门MSV1)

当机组挂闸、低压保安油建立后,DEH发出指令使#1高压主汽门遮断电磁

阀(16YV)失电,#1高压主汽门试验电磁阀(18YV)带电。高压抗燃油

经滤网后分成两路:一路经#1高压主汽门遮断电磁阀(16YV)进入#1高

压主汽门卸荷阀的上腔室并使其关闭,建立高压保安油,使油

图2—10高、中压主汽门油动机工作原理图

图2—11高压主汽门油动机系统图

图2-12中压主汽门油动机系统图

动机工作准备就绪;另一路到井1高压主汽门试验电磁阀(18YV)前,等待

DEH的指令,当DEH发出开启主汽门指令后,使#1主汽门试验电磁阀

(18YV)失电,抗燃油经#1高压主汽门试验电磁阀(18YV)进入油动机

活塞下腔室拉伸弹簧开启主汽门。

当主汽门全开时,限位行程开关向DEH反馈阀门全开信号。

2.2主汽门的关闭

当高压安全油失压时,卸荷阀在活塞下腔室油压的作用下打开,油动机

活塞下腔室压力油通过卸荷阀向油动机活塞上腔转移,多余的油液则通过

单向阀回油箱,阀门操纵座在弹簧紧力和蒸汽力的作用下迅速关闭主汽阀。

当DEH接到各种电气遮断信号后,发出指令使#1高压主汽门遮断电磁阀

(18YV)带电动作,泄掉#1高压主汽门卸荷阀的上腔室油压,卸荷阀在活

塞下腔室油压作用下打开,油动机活塞下腔室压力油通过卸荷阀向油动机

活塞上腔转移,多余的油液则通过单向阀回油箱,阀门操纵座在弹簧紧力和

蒸汽力的作用下迅速关闭主汽阀。

当主汽门关闭时,限位行程开关向DEH反馈阀门全关信号。

2.3主汽门活动试验

当需要进行阀门活动试验时,按下在DEH操作盘上的试验按钮,DEH发出

指令使#1高压主汽门试验电磁阀(18YV)带电动作,油动机活塞下腔室的

压力油经节流调整阀与回油相通,阀门活动试验速度由节流孔来控制,当主

汽门试验到位时(阀位85%),限位行程开关向DEH反馈阀门试验结束信

号,DEH发出指令使#1高压主汽门试验电磁阀(18YV)失电,主汽门恢复

原位,阀门全开。

当单个阀门需做快关试验时,只需使遮断电磁阀带电,油动机和阀门在操纵

座弹簧紧力和蒸汽力作用下迅速关闭。

第三节执行机构改造要点

3.1拆去机组原有的高压配汽杠杆和高压油动机,改为每个高压

调节阀由一个高压抗燃油油动机驱动(称为高压调节阀油动机,简称高调油

动机或CV)O共计四个高压调节阀油动机。油动机装在原高压调节阀操纵

座上端,由特殊设计的支架支撑在操纵座壳体上。油动机开启压缩操纵座上

的弹簧,同时拉起阀门,阀门开启方向与油动机方向一致,阀门关闭由操纵

座弹簧紧力来完成(图2—1是一个高压调节阀油动机的系统图)。拆去机组

原有的高压调节阀盖,并换上新的高强度阀盖。

3.2拆去机组原有的高压主汽门油动机,改为由高压抗燃油油动

机驱动(称为高压主汽阀油动机,简称高主油动机或MSV)。每阀配一油动

机,共计二个高压主汽阀油动机。设计了专用的高压主汽阀操纵座,以适应

油动机与主汽阀的接配。

3.3机组的中压主汽阀和调节汽阀安装在同一铸造壳体中,属于联合

汽阀。改造以后,拆去机组原有的中压主汽门油动机,改为由高压抗燃油油

动机驱动(称为中压主汽阀油动机,简称中主油动机或RSV),每阀配一油

动机,共计二个中压主汽阀油动机,设计了专用的中压主汽阀操纵座,以适

应油动机与主汽阀的接配;拆去机组原有的中压调节阀油动机,改为每个中

压调节阀由一个高压抗燃油油动机驱动(称为中压调节阀油动机,简称中调

油动机或ICV),共计二个中压调节阀油动机。油动机装在中压联合汽门壳

体的旁边,通过杠杆压缩操纵座上的弹簧,拉起阀门,阀门开启方向与油动

机方向一致,阀门关闭由操纵座弹簧紧力来完成。(图2—9中压调节门油动

机系统图、图2—10中压主汽门油动机系统图)

3.4各油动机安装前应使活塞杆来回上下活动儿次,活动前应将管接头上

的堵头拆下,活动后将其恢复。

3.5由于未经制造厂总装,在进行油动机和和操纵座装配时,现场应具备

钻、销设备。

第四节高压调节阀操纵座的安装

高压调节阀操纵座的安装(图2—13所示)

4.1油缸位置调整

先将油缸活塞杆拉出至最大伸出,操纵座在弹簧力作用下位于下止点,

配准会环(件13)的厚度使套环(件13)下端面高出导柱(件③)下端面

即图中b=1mm

4.2导柱的装配与拆卸

4.31)装配导柱(件③)之前先试装挡板(件31),特制螺栓(件32),

滚针轴承(件33),并按要求打好维销孔。

4.42)拆卸导柱(件③)时应先拔除推销(件30),拆掉件31,32,33,然

后将导柱(件③)取出。

4.5与阀门的装配

1)操纵座与高压调节阀连接,将联接块(件29)旋入阀杆到底,用

紧定螺钉(件38)固定。

2)阀杆位于下止点,先不装调整垫(件14),测量图中和“K”

面之间的间隙,配难调整垫(件14)的厚度为该间隙十15mm,完成上述步

骤后装入调整垫(件14),用特制螺栓(件15),垫片(件16)将阀门与

操纵座连接,即可保证图中a=15mm,油缸活塞距离下止点为16mm。

3)整个部套装配完后,在连接座(件④)上配钻4一①4深5的孔以安装刻

度牌(件5),使得指针(件7)箭头对准刻度牌的“0”刻度。

4.4其他

1)配准调整垫(件11)并同时调整位移传感器富的前后位置,以使关

节轴承(件10)与位移传感相盒的拉杆保持同心。调整完毕后,配作定位销

(件9)和(件12)o

2)在以上各部营的装配过程中,必须保证每个活动关节运动自如,无卡

涩现象。

3)现场安装时,可根据实际情况调整操纵座的方向,以便于检修。

4.5注意事项:

打开和压紧联接座(件①)时,先对称地换上四支螺柱(件34),以免发生

危险。

第五节高压主汽阀操纵座的安装

高压主汽阀操纵座的安装(如图2—14所示)

5.1与油动机的装配

1)将油缸活塞杆,加长杆(件14),止动垫环(件16)连接紧固并用

齐缝螺钉(件24)固定。

2)将油动机与操纵座连接,油缸活塞位于下止点,配准垫块(件34)

的厚度使得垫块(件34)上端面与导向座(上)(件②)上端面平齐,然后

将油动机与操纵座连接紧固。

5.2与主汽阀的装配

1)将操纵座连油动机整体安装与阀门上,套筒(件1)事先套与阀杆上

并使阀杯位于下止点。

2)调整螺栓(件25)的伸出长度,使得联接套(件5)与阀杆能够用

联轴节(件2)联结(哈佛式连接),即可实现图中a=15mm(由零件加工

保证),套上套简(件1)并用螺钉(件24)鉴定,操纵座60装配完毕。

5.3其他

配准调整垫片(件29)的厚度,同时调整行程开关盒的前后位置,使

关节轴承(件28)与行程开关盒上的拉杆同心,调整完毕后配作销(件27)o

5.4注意事项

1)油动机及操纵座只能整体从阀门上拆下。

2)在装配过程中,必须保证每个活动环节运行自如,无卡涩。

3)现场安装时,可根据实际情况调整操纵座的方向,以便于检修及限位开关

盒中限位开关的调整。

第六节中压主汽阀操纵座的安装

中压主汽阀操纵座的安装(如图2—15所示)

6.1与油动机的装配

1)将加长轴(件④)与油动机活塞杆连接紧固并将其与油动机整体装

入操纵座。

2)油动机活塞为与下止点,配准调整整(件27)的厚度使得图中

c-Omnio

图2-13

图2—14

6.2与主汽阀的装配

1)装上开关臂(件19),把紧螺母(件21)o垫片(件22)折边,将

连接器(件26)装在阀门上并使阀门位于冷态全关位置。

2)测量连接器(件26)下端面与开关臂(件19)上端面之间的距离,配

准调整块(件23)的厚度使其为测得之距离一15mm,用特制螺栓(件24)

将操纵座与阀门连接紧固,即可保证图中b=15mm,至此即完成了操纵座

的装配。

6.3其它

1)调整行程开关盒的前后位置,以使关节轴承(件17)与行程开关盒

的拉杆保持同心。调整完毕后,配作定位销(件16)和(件18)o

2)在安装过程中,必须保证每个活动环节运行自如,没有卡涩现象。

3)现场安装时,操纵座的方向可根据实际情况适当调整,以便于检修和

限位开关盒中限位开关的调整。

6.4注意事项

打开和压紧顶盖(件①)时,先对称地换上四支长螺杆,以免发生危险。

第七节中压调节阀操纵座的安装

中压调节阀操纵座的安装(如图2—16所示)

7.1与油动机的装配

1)将接长杆(件24)旋入油动机活塞杆到底。打销(件28)并在两端

三点冲牢。

2)将油动机机接长杆装入操纵座中,油动机活塞杆位于下止点,配

准调整垫圈(件23)的厚度保证图中a=Omm。

3)拉出油动机活塞杆(包括接长杆),装上垫片(件10),把紧螺

母(件21),配作销孔,并装入销(件22)。

4)将油动机活塞杆恢复至下止点。

7.2与阀门的装配

1)将连接杆(件③)与阀门操作杠杆连接,连接时将限位套(Y49-

300000A004)割为两件装入,保证连接杆(件③)位于阀门操作杠杆中间。

2)阀门位于冷态全关位置.,操纵座在弹簧力作用下位于下止点,较接头

(件⑤)下端面与垫片(件10)紧贴,测量医中b值,配准调整垫圈(件15)

的厚度为b—l5mm(如果件15的余量不够,可通过调整调整垫圈(丫49一

364600A002)来满足。

3)旋紧较接头(件⑤)与连接杆(件③)。配作销孔并打销(件16),在

两端三点冲牢。

IV、

专I不

图2-15

L_

图2—16

4)完成上述步骤后,用螺栓(件14)将较接头(件⑤)与操纵座连接

紧固,即完成了操纵座的装配。

5)调整指针(件39)的位置,使得阀门在冷态全关位置时指针指在标

尺牌“0”位。

7.3其它

1)配准调整垫(件27)的厚度,同时调整位移传感器盒的前后位置,使

关节轴承(件29)与使移传感器盒上的拉杆同心。

2)调整完毕后,配作销(件30)。

7.4注意事项

打开和压紧上下端盖时必须换上双头螺柱(件19),以免发生危险。

第八节限位开关的整定

本系统的高压主汽阀操纵座和中压主汽阀操纵座均配有限位开关盒,其限

位开关及接块的准确位置须在现场进行调整,过程如下:

1)阀门处于全美状态,调整全关位限位开关的摆臂,使其与轴的中心

线垂直。

2)移动撞块使眼位开关的触点转换,将撞块上的紧定螺钉拧紧。

3)调整全开位限位开关的摆臂,使其与轴的中心线垂直。

4)全开油动机使眼位开关的触点转换,将撞块上的紧定螺钉拧紧。

5)调整活动试验位限位开关的摆臂,使其与轴的中心线垂直。

6)当油动机关15%行程时,调整撞块的位置,使限位开关触点转换,

拧紧撞块上的紧定螺钉C

7)将油动机开启、关闭一次,检查各眼位开关动作的准确性。

8)在每个撞块上钻销孔,打销子,销于两端三点冲牢。

9)当机组热态稳定后,限位开关的位置可能需稍作调整,这时只需根据

实际情况改变限位开关摆臂的角度即可。

第九节执行机构故障处理

执行机构工作一般是可靠的,当执行机构发现故障时,首先判断故障是

在一台执行机构还是全部控制执行器故障。当故障影响到全部执行机构时,

通常是公共系统,如高压油系统的故障、电源系统故障。如仅在一个执行机

构发生故障便可仅对此阀进行检查。

当发现执行机构动作异常时,首先应检查电气信号,如伺服卡较容易发

生故障、LVDV也是一个容易出故障的地方。

如果电气系统正常,则故障点在电液转换器,油动机高压滤油器等,检

查滤油器两端差压是否正常,如果滤网堵了可以更换滤网(差压>O.35MPa)。

缓慢开启卸荷阀上的针阀,改变油动机活塞下的油压,看油动机活塞是

否缓慢关小,如不能动作,进一步打开遮断电磁阀,若仍不动作,则表明可

能是油动机活塞或阀杆卡涩,则需要进行检查V

执行机构最容易发生故障的是电液转换阀。它的喷嘴直径非常小,容易堵塞

而使调节迟缓或失灵,;卸荷阀的节流孔也是一个容易发生故障的位置。

如果确实影响机组安全而不能停机的情况下,可以将单个执行器在线检修。

对于高、中压调节门只要关闭高压过滤器的两个截止阀及旁路阀;对于高、

中压主汽门只要关闭高压油进油截止阀就能把执行机构解列,进行在线检

修。

第三章供油系统

供油系统为调节保安系统各执行机构提供符合要求的高压抗燃油

(14MPa)o

第一节工作原理

由交流马达驱动高压柱塞变量泵,通过滤网由泵将油箱中的抗燃油吸入,从

油泵出口的油经过压力滤油器流入高压蓄能器和该蓄能器联接的高区油母

管,将高压抗燃油送到各执行机构和高压遮断系统。溢流阀在高压油母管压

力达17±().2MPa时动作,起到过压保护作用。各执行机构的回油通过油管

先经过滤油器然后通过冷油器回至油箱°高压母管上压力开关12Ps能对油

压偏离正常时提供报警信号并提供自动启动备用泵的开关信号,压力开关

9PS、IOPS、UPS能送出遮断停机信号(三取二逻辑),13PS、14YV和26YV、

27YV用于主油泵联锁试验(节流孔设计是为了试验时不影响系统母管的油

压,以确保机组正常运行)。油箱内装有温度控制器,油箱油温过高过低报警

的测点及油位报警和遮断的装置,油位指示器安放在油箱的侧面。如图3-1

油箱系统图所示

第二节主要部件

2.1高压柱塞泵

油泵启动后,两台EH油泵均为压力补偿式变量柱塞泵,油泵以全

流量100L/min向系统供油,同时也给蓄能器充油,当油压到达系统的整定

压力14Mpa时,高压油推动恒压泵上的控制阀,控制阀操作泵的变量机构,

减少活塞行程,使泵的输出流量减少,当泵的输出流量和系统用油流量相等

时,泵的变量机构维持在某一位置,当系统需要增加或减少用油量时,泵会

自动改变输出流量,维护系统油压在14MPao当系统瞬间用油量很大时蓄

能器将参与供油。两台泵布置在油箱的下方,以保证正的吸入压头。

溢流阀在高压油母管压力达到17±0.2MPa时动作,起到过压保护作用。

两台主控泵为30KW380V50Hz三相变量泵采用弹性柱销联轴器;电机

和泵采用法兰套筒联接,便于电机和泵检修。

2.2油箱

油箱能容纳900升液压油。考虑到抗燃油内少量水份对碳钢有腐蚀

作用,油箱全部采用不锈钢材料制成。

油箱板上有液位开关(油位报警和遮断)、磁性滤油器、空气滤清器(兼作

加油口),使供油装置呼吸时对空气有足够的过滤精度,以保证系统的清

图3-1油箱系统图

洁度。油箱中还插有磁棒用以吸附油箱中游离的磁性微粒。控制块组件等液

压元件。另外,油箱的底部外侧安装有一个加热器,在油温低于

18c时必须给加热器通电,加热EH油。循环泵入口装有加油口。

2.3控制块

控制块安装在油箱顶部,它加工成能安装下列部件:

过滤器组件(集成块)上安装有作安全阀用的溢流阀DB10、直角单向

阀、高压过滤器及检测高压过滤器流动情况的压差发讯器两套,各成独立回

路,系统的高压油由组件下端引出,共分三路,各由高压球阀控制启闭,按

需取用。

用于隔离EH油泵联锁的试验压力开关13PS、14Ps和试验电磁阀

25YV、26YVo

2.4高压蓄能器

高压蓄能船共有三组,其中一组安装在供油装置上,规格为2X101;二

组安装在压力油管路上,规格为2X401o高压蓄能器用来吸收

高压抗燃油油压波动,消除管路激振。高压蓄能器为氟橡胶皮囊

式蓄能器,预充氮压力为9.8MPa,高压蓄能器通过集成块与高

压抗燃油系统压力油相连,集成块包括隔离阀、排放阀以及压力

表等,其中压力表指示的是油压力而不是氮气压力。

2.5低压蓄能器

低压蓄能器共有两组,安装在压力回油油管路上,规格为2X401。低压

蓄能器用来维持排油背压,吸收系统大量排油使背压不至于过

高。低压蓄能器为氨橡胶皮囊式蓄能器,预充氮压力为0.2MPa,

高压蓄能器通过集成块与高压抗燃油系统压力油相连,集成块

包括隔离阀、排放阀以及压力表等,其中压力表指示的是油压力

而不是氮气压力。

2.6冷油器

一个冷油器装在油箱旁,冷却水在管内流过,而系统中的油在冷油器外

壳内环绕管束流动。冷却水由冷油器循环冷却水的出口处的电

磁水阀控制。

2.7温度控制回路

测温开关来的信号控制继电器,再由继电器操作电磁阀,当油箱温度超

过上限值45℃时电磁水阀打开,冷却水流过冷油器,当油温降

到下限值30℃时电磁水阀关闭。

2.8浮子型液位报警装置

浮子型液位报警装置安装在油箱顶部。当液位改变时,推动开关机构,能发

出高、低油位报警;并在极限低油位时,能使遮断开关动作,停

主油泵°主油泵停运,EH油压下降,将紧急遮断汽轮机°

2.9回油回路

油系统回油分有压回路和无压回路:

无压回路是高、低压蓄能器检修时用的,也是油系统检修时放油时用。

有压回油是油系统正常工作时的回油,是正常的回油,其特点是有一定

的压力。当油动机动作时,一部分油首先进入低压蓄能器,然后再慢慢地通

过滤油器、冷油器排入油管。

一个弹簧加载逆止阀装在压力回油箱的管路上,这样可在过滤涉堵塞

时或回油压力过高时,便回油直接通过该阀回到油箱。

回油过滤器做成筒式,内装有三个相串联的精密过滤器,为避免当过滤

器堵塞时过滤器被油压压扁,装有过载单向阀当回油过滤器进

出口间差压大于0.35MPa时,单向阀动作,将过滤器短路,回油

过滤器组件装在油箱旁边的压力回油管路上,为了便于调换滤

芯,在滤器外壳上装有一个可拆卸的盖板。本装置有两个回油过

滤器,一个串联在有压回油油路过滤器系统回油;另一个回油过

滤器在循环回路,在需要时启动系统,过滤油箱中油液。

2.10抗燃油

为防止火灾而不能采用传统的透平油作为控制系统的介质。所以EH系

统设计的液压油为磷酸酯型抗燃油。其正常工作温度为35〜45℃。

抗燃油的理化性能

鉴于三芳基磷酸脂抗燃油的特殊理化性能,本系统中所用的密封材料均

为氟橡胶,金属材料尽量采用不锈钢!Cri8Ni9Tio

采用美国GLCC公司生产的纯天然三芳基磷酸脂抗燃油,其理化性能如下:

粘度(ASTMD445-72)98.9℃(saybolt)43秒(5mm2/s)

37.8℃(saybolt)220秒(47mm2/s)

酸指数(毫克KOH/克)0.03

最大发泡(起泡沫ASTMD)(892-72)(毫升)10

粘度指数0

最大色度(ASTM)1.5

比重60叩(16℃)1.142

最大含水量WT%0.03

最大含氟量ppm(x射线荧光分析)20

颗粒度分布NAS5级或(SAEA—6D)试运2级

水解稳定性(48小时)合格

最小电阻值OHM/cm12X109

最低闪点455°F(235℃)

燃点665°F(352℃)

自燃点1100°F(594℃)

空气夹带量(ASTMD3427)分钟(1.0)

热膨胀系数在100°F(38℃)时0.00038

抗燃油安全使用

应避免吸入或在以外情况下吞入抗燃油,应禁止在工作场地进食与吸烟,

并尽可能避免接触皮肤。如抗燃油溅落在保温层上应立即擦去。

2.11再生装置

抗燃油再生装置是一种用来储存吸附剂和使抗燃油得到再生的装置(使

油保持中性、去除水份等)。该装置主要由硅藻土滤器和精密滤器(即波纹

纤维滤器)等所组成C

一个精密过滤器与一个硅藻土滤器相串联,它们安装在独立循环滤油

的管路上,打开再生装置前的截止阀,即可以使再生装置投入

运行。关闭该截止阀即可停止使用再生装置。

每个滤器上还装有一个压力表,当滤器需要检修时,此压力表就指出不

正常的高压力。硅藻土滤器以及波纹纤维滤器均为可调换滤芯

的结构。当管路上的阀门关闭时・,滤器盖可以拆去,以便调换滤

芯。如果任一个滤油器的油温在43〜54℃之间,压力高达

0.35MPa时,就需调换该装置。

2.12自循环滤油系统

在机组正常运行时,系统的滤油效率较低。因此,经过一段时间的机组

运行以后,EH油质会变差,而要达到油质的要求则必须停机重

新油循环。为了不影响机组的正常运行,为了保证油系统的清洁

度,使系统长期可靠运行,在供油装置中增设独立自循环滤油

系统0油泵从油箱内吸入EH油,经过两个过滤精度为lum的

过滤器回油箱。油泵可以由EH端子箱上的控制按钮直接启动或

停止。泵流量为10L/min,电机功率0.75KW。电源380VAC,

50HZ,三相。自循环系统配有冷油器,当油温过高时,也可用于

降温,即是伺服系统不工作,也可进行滤油。

2.13油管路系统

油管路系统主要由一套油管和四个高、低压蓄能器组成。油管作用是连

接供油系统与执行机构,构成回路。二组高压蓄能器及二组低压蓄能器分别

装在二个支架上,二个支架分别位于汽机左右二侧靠近高压调门伺服机构

旁。此蓄能器通过一个蓄能器块与油系统相连,蓄能器块上有二个截止阀,

此阀能将蓄能器与系统隔绝并放掉蓄能器中的高压EH油,对蓄能器进行测

量气压力与在线维修。低压蓄能器的作用是维持有压排油的背压,使其不至

于太高或太低。

2.14油加热器

油加热器为三块板式远红外线加热器组成,星形连接,当油温低于18℃时,

TS接点启动加热器给汨液加热,此时循环泵同时(自动)启动以保证油液

受热均匀,温度控制器TS2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论