2026届山东省青岛市黄岛区致远中学数学高一上期末预测试题含解析_第1页
2026届山东省青岛市黄岛区致远中学数学高一上期末预测试题含解析_第2页
2026届山东省青岛市黄岛区致远中学数学高一上期末预测试题含解析_第3页
2026届山东省青岛市黄岛区致远中学数学高一上期末预测试题含解析_第4页
2026届山东省青岛市黄岛区致远中学数学高一上期末预测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届山东省青岛市黄岛区致远中学数学高一上期末预测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.表面积为24的正方体的顶点都在同一个球面上,则该球的表面积是A. B.C. D.2.函数的部分图象如图所示,将函数的图象向左平移个单位长度后得到的图象,则下列说法正确的是()A.函数为奇函数B.函数的最小正周期为C.函数的图象的对称轴为直线D.函数的单调递增区间为3.函数,则A. B.-1C.-5 D.4.下列函数中,与函数是同一函数的是()A. B.C. D.5.已知直线的方程是,的方程是,则下列各图形中,正确的是A. B.C. D.6.已知,则的最小值是()A.5 B.6C.7 D.87.若三点在同一直线上,则实数等于A. B.11C. D.38.王安石在《游褒禅山记》中写道“世之奇伟、瑰怪,非常之观,常在于险远,而人之所罕至焉,故非有志者不能至也”,请问“有志”是到达“奇伟、瑰怪,非常之观”的A.充要条件 B.既不充分也不必要条件C.充分不必要条件 D.必要不充分条件9.由直线上的点向圆引切线,则切线长的最小值为A. B.C. D.10.已知全集,集合1,2,3,,,则A.1, B.C. D.3,二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数的定义域为R,,且函数为偶函数,则的值为________,函数是________函数(从“奇”、“偶”、“非奇非偶”、“既奇又偶”中选填一个).12.使三角式成立的的取值范围为_________13.若一扇形的圆心角为,半径为,则该扇形的面积为__________.14.已知幂函数过定点,且满足,则的范围为________15.函数的部分图象如图所示.则函数的解析式为______16.设函数,若实数满足,且,则的取值范围是_______________________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x万件,其总成本为万元,其中固定成本为3万元,并且每生产1万件的生产成本为1万元(总成本=固定成本+生产成本),销售收入满足,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数的解析式(利润=销售收入−总成本);(2)工厂生产多少万件产品时,可使盈利最多?18.已知函数,当时,取得最小值(1)求a的值;(2)若函数有4个零点,求t的取值范围19.已知圆C过,两点,且圆心C在直线上(1)求圆C的方程;20.已知集合,集合(1)当时,求;(2)若,求实数的取值范围;(3)若,求实数的取值范围21.给出以下定义:设m为给定的实常数,若函数在其定义域内存在实数,使得成立,则称函数为“函数”.(1)判断函数是否为“函数”;(2)若函数为“函数”,求实数a的取值范围;(3)已知为“函数”,设.若对任意的,,当时,都有成立,求实数的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据正方体的表面积,可求得正方体的棱长,进而求得体对角线的长度;由体对角线为外接球的直径,即可求得外接球的表面积【详解】设正方体的棱长为a因为表面积为24,即得a=2正方体的体对角线长度为所以正方体的外接球半径为所以球的表面积为所以选A【点睛】本题考查了立体几何中空间结构体的外接球表面积求法,属于基础题2、D【解析】根据图象得到函数解析式,将函数的图象向左平移个单位长度后得到的图象,可得解析式,分别根据正弦函数的奇偶性、单调性、周期性与对称性,对选项中的结论判断,从而可得结论.【详解】由图象可知,,∴,则.将点的坐标代入中,整理得,∴,即;,∴,∴.∵将函数的图象向左平移个单位长度后得到的图象,∴.,∴既不是奇函数也不是偶函数,故A错误;∴的最小正周期,故B不正确.令,解得,则函数图像的对称轴为直线.故C错误;由,可得,∴函数的单调递增区间为.故D正确;故选:D.【点睛】关键点睛:本题主要考查三角函数的图象与性质,熟记正弦函数的奇偶性、单调区间、最小正周期与对称轴是解决本题的关键.3、A【解析】f(x)=∴f()=,f[f()]=f()=.故答案为A点睛:由分段函数得f()=,由此能求出f[f()]的值4、C【解析】确定定义域相同,对应法则相同即可判断【详解】解:定义域为,A中定义域为,定义域不同,错误;B中化简为,对应关系不同,错误;C中定义域为,化简为,正确;D中定义域为,定义域不同,错误;故选:C5、D【解析】对于D:l1:y=ax+b,l2:y=bx-a.由l1可知a<0,b<0,对应l2也符合,6、C【解析】,根据结合基本不等式即可得出答案.【详解】解:,因为,又,所以,则,当且仅当,即时,取等号,即的最小值是7.故选:C7、D【解析】由题意得:解得故选8、D【解析】根据题意“非有志者不能至也”可知到达“奇伟、瑰怪,非常之观”必是有志之士,故“有志”是到达“奇伟、瑰怪,非常之观”的必要条件,故选D.9、B【解析】过圆心作直线的垂线,垂线与直线的交点向圆引切线,切线长最小【详解】圆心,半径,圆心到直线的距离则切线长的最小值【点睛】本题考查圆的切线长,考查数形结合思想,属于基础题10、C【解析】可求出集合B,然后进行交集的运算,即可求解,得到答案【详解】由题意,可得集合,又由,所以故选C【点睛】本题主要考查了集合的交集运算,其中解答中正确求解集合B,熟记集合的交集运算是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、①.7②.奇【解析】利用函数的奇偶性以及奇偶性定义即可求解.【详解】函数为偶函数,由,则,所以,所以,,定义域为,定义域关于原点对称.因为,所以,所以函数为奇函数.故答案为:7;奇12、【解析】根据同角三角函数间的基本关系,化为正余弦函数,即可求出.【详解】因为,,所以,所以,所以终边在第三象限,.【点睛】本题主要考查了同角三角函数间的基本关系,三角函数在各象限的符号,属于中档题.13、【解析】利用扇形的面积公式可求得结果.【详解】扇形的圆心角为,因此,该扇形的面积为.故答案:.14、【解析】根据幂函数所过的点求出解析式,利用奇偶性和单调性去掉转化为关于的不等式即可求解.【详解】设幂函数,其图象过点,所以,即,解得:,所以,因为,所以为奇函数,且在和上单调递减,所以可化为,可得,解得:,所以的范围为,故答案为:.15、【解析】由图象可得出函数的最小正周期,可求得的值,再由结合的取值范围可求得的值,即可得出函数的解析式.【详解】函数的最小正周期为,则,则,因为且函数在处附近单调递减,则,得,因,所以.所以故答案为:.16、【解析】结合图象确定a,b,c的关系,由此可得,再利用基本不等式求其最值.【详解】解:因为函数,若实数a,b,c满足,且,;如图:,且;令;因为;,当且仅当时取等号;,;故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)4万件【解析】(1)由题意,总成本,由即可得利润函数解析式;(2)根据反比例函数及二次函数的单调性,求出分段函数的最大值即可求解.【小问1详解】解:由题意,总成本,因为销售收入满足,所以利润函数;小问2详解】解:当时,因为函数单调递减,所以万元;当时,函数,所以当时,有最大值为13(万元).所以当工厂生产4万件产品时,可使盈利最多为13万元.18、(1)4(2)【解析】(1)分类讨论和两种情况,由其单调性得出a的值;(2)令,结合一元二次方程根的分布得出t的取值范围【小问1详解】解:当时,,则,故没有最小值当时,由,得,则在上单调递减,在上单调递增,故,即【小问2详解】的图象如图所示令,则函数在上有2个零点,得解得,故t的取值范围为19、(1);(2)或.【解析】(1)设圆C的圆心为,半径为r,结合题意得,解出a、b、r的值,将其值代入圆的方程即可得答案(2)根据题意,分类讨论,斜率存在和斜率不存在两种情况:①当直线l的斜率不存在时,满足题意,②当直线l的斜率存在时,设所求直线l的斜率为k,则直线l的方程为:,由点到直线的距离公式求得k的值,即可得直线的方程,综合2种情况即可得答案【小问1详解】根据题意,设圆C的圆心为,半径为r,则圆C方程为,又圆C过,,且圆心C在直线上,∴,解得:,,,故圆C的方程为小问2详解】根据题意,设直线l与圆C交与MN两点,则,设D是线段MN的中点,则,∴,在中,可得当直线l的斜率不存在时,此时直线l的方程为,满足题意,当直线l的斜率存在时,设所求直线l的斜率为k,则直线l为:,即由C到直线MN距离公式:,解得:,此时直线l的方程为综上,所求直线l的方程为或20、(1);(2);(3)【解析】(1)求出集合,利用并集的定义可求得集合;(2)利用可得出关于实数的不等式组,由此可解得实数的取值范围;(3)分和两种情况讨论,结合可得出关于实数的不等式组,可求得实数的取值范围.【详解】(1)当时,,则;(2)由知,解得,即的取值范围是;(3)由得①若,即时,符合题意;②若,即时,需或得或,即综上知,即实数的取值范围为【点睛】易错点睛:在求解本题第(3)问时,容易忽略的情况,从而导致求解错误.21、(1)是(2)(3)【解析】(1)根据定义判得时,满足,进而判断;(2)根据题意得,,进而整理得存在实数使得,再结合和讨论求解即可;(3)由题知,故不妨设,进而得,故构造函数,则函数在上单调递增,在作出函数图像,数形结合求解即可.【小

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论