版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京海淀北理工附中2026届高一数学第一学期期末复习检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,则()A.3 B.2C.1 D.-12.下列图象是函数图象的是A. B.C. D.3.在中,角、、的对边分别为、、,已知,,,则A. B.C. D.4.已知,设函数,的最大值为A,最小值为B,那么A+B的值为()A.4042 B.2021C.2020 D.20245.已知函数的值域为R,则实数的取值范围是()A. B.C. D.6.某人围一个面积为32m2的矩形院子,一面靠旧墙,其它三面墙要新建(其平面示意图如下),墙高3m,新墙的造价为1000元/m2,则当A.9 B.8C.16 D.647.如图,一个半径为3m的筒车按逆时针方向每分转1.5圈,筒车的轴心O距离水面的高度为2.2m,设筒车上的某个盛水筒P到水面的距离为d(单位:m)(在水面下则d为负数),若从盛水筒P刚浮出水面时开始计算时间,则d与时间t(单位:s)之间的关系为,则其中A,,K的值分别为()A.6,,2.2 B.6,,2.2C.3,,2.2 D.3,,2.28.函数的零点所在的区间是A.(0,1) B.(1,2)C.(2,3) D.(3,4)9.设当时,函数取得最大值,则()A. B.C. D.10.设函数的定义域为,若存在,使得成立,则称是函数的一个不动点,下列函数存在不动点的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知a,b,c是空间中的三条直线,α是空间中的一个平面①若a⊥c,b⊥c,则a∥b;②若a∥α,b∥α,则a∥b;③若a∥α,b⊥α,则a⊥b;④若a∥b,a∥α,则b∥α;说法正确的序号是______12.已知,且的终边上一点P的坐标为,则=______13.命题“,”的否定是___________.14.若,,则a、b的大小关系是______.(用“<”连接)15.实数,满足,,则__________16.函数的定义域为_______________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,某园林单位准备绿化一块直径为的半圆形空,外的地方种草,的内接正方形为一水池,其余的地方种花,若,,,设的面积为,正方形的面积为(1)用表示和;(2)当变化时,求的最小值及此时角的大小.18.读下列程序,写出此程序表示的函数,并求当输出的时,输入的的值.19.已知函数.(1)求的值;你能发现与有什么关系?写出你的发现并加以证明:(2)试判断在区间上的单调性,并用单调性的定义证明.20.已知函数,.(1)求方程的解集;(2)定义:.已知定义在上的函数,求函数的解析式;(3)在(2)的条件下,在平面直角坐标系中,画出函数的简图,并根据图象写出函数的单调区间和最小值.21.如图,在几何体中,,均与底面垂直,且为直角梯形,,,,,分别为线段,的中点,为线段上任意一点.(1)证明:平面.(2)若,证明:平面平面.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】直接利用诱导公式化简,再根据同角三角函数的基本关系代入计算可得;【详解】解:因为,所以;故选:B2、D【解析】由题意结合函数的定义确定所给图象是否是函数图象即可.【详解】由函数的定义可知,函数的每一个自变量对应唯一的函数值,选项A,B中,当时,一个自变量对应两个函数值,不合题意,选项C中,当时,一个自变量对应两个函数值,不合题意,只有选项D符合题意.本题选择D选项.【点睛】本题主要考查函数的定义及其应用,属于基础题.3、B【解析】分析:直接利用余弦定理求cosA.详解:由余弦定理得cosA=故答案为B.点睛:(1)本题主要考查余弦定理在解三角形中的应用,意在考查学生对余弦定理的掌握水平.(2)已知三边一般利用余弦定理:.4、D【解析】由已知得,令,则,由的单调性可求出最大值和最小值的和为,即可求解.【详解】函数令,∴,又∵在,时单调递减函数;∴最大值和最小值的和为,函数的最大值为,最小值为;则;故选:5、C【解析】分段函数值域为R,在x=1左侧值域和右侧值域并集为R.【详解】当,∴当时,,∵的值域为R,∴当时,值域需包含,∴,解得,故选:C.6、B【解析】由题设总造价为y=3000(x+64x),应用基本不等式求最小值,并求出等号成立时的【详解】由题设,总造价y=1000×3×(x+2×32当且仅当x=8时等号成立,即x=8时总造价最低.故选:B.7、D【解析】根据实际含义分别求的值即可.【详解】振幅即为半径,即;因为逆时针方向每分转1.5圈,所以;;故选:D.8、B【解析】因为函数为上的增函数,故利用零点存在定理可判断零点所在的区间.【详解】因为为上的增函数,为上的增函数,故为上的增函数.又,,由零点存在定理可知在存在零点,故选B.【点睛】函数的零点问题有两种类型,(1)计算函数的零点,比如二次函数的零点等,有时我们可以根据解析式猜出函数的零点,再结合单调性得到函数的零点,比如;(2)估算函数的零点,如等,我们无法计算此类函数的零点,只能借助零点存在定理和函数的单调性估计零点所在的范围.9、D【解析】利用辅助角公式、两角差的正弦公式化简解析式:,并求出和,由条件和正弦函数的最值列出方程,求出的表达式,由诱导公式求出的值【详解】解:函数(其中,又时取得最大值,,,即,,,故选:10、D【解析】把选项中不同的代入,去判断方程是否有解,来验证函数是否存在不动点即可.【详解】选项A:若,则,即,方程无解.故函数不存在不动点;选项B:若,则,即,方程无解.故函数不存在不动点;选项C:若,则,即或,两种情况均无解.故函数不存在不动点;选项D:若,则,即设,则,则函数在上存在零点.即方程有解.函数存在不动点.故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、③【解析】根据空间线面位置关系的定义,性质判断或举反例说明【详解】对于①,若a,b为平面α的直线,c⊥α,则a⊥c,b⊥c,但a∥b不一定成立,故①错误;对于②,若a∥α,b∥α,则a,b的关系不确定,故②错误;对于③,不妨设a在α上的射影为a′,则a′⊂α,a∥a′,由b⊥α可得b⊥a′,于是a⊥b,故③正确;对于④,若b⊂α,显然结论不成立,故④错误.故答案为③【点睛】本题考查了空间线面位置关系的判断,属于中档题,12、【解析】先求解,判断的终边在第四象限,计算,结合,即得解【详解】由题意,故点,故终边在第四象限且,又故故答案为:13、“,”【解析】直接利用全称命题的否定是特称命题写出结果即可【详解】因为全称命题的否定为特称命题,故命题“,”的否定为:“,”故答案为:“,”14、【解析】容易看出,<0,>0,从而可得出a,b的大小关系【详解】,>0,,∴a<b故答案为a<b【点睛】本题主要考查对数函数的单调性,考查对数函数和指数函数的值域.意在考查学生对这些知识的理解掌握水平和分析推理能力.15、8【解析】因为,,所以,,因此由,即两交点关于(4,4)对称,所以8点睛:利用函数图象可以解决很多与函数有关的问题,如利用函数的图象解决函数性质问题,函数的零点、方程根的问题,有关不等式的问题等.解决上述问题的关键是根据题意画出相应函数的图象,利用数形结合的思想求解.16、【解析】由题可知,解不等式即可得出原函数的定义域.【详解】对于函数,有,即,解得,因此,函数的定义域为.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)最小值【解析】(1)在中,可用表示,从而可求其面积,利用三角形相似可得的长度,从而可得.(2)令,从而可得,利用的单调性可求的最小值.【详解】(1)在中,,所以,.而边上的高为,设斜边上的为,斜边上的高为,因,所以,故,故,.(2),令,则.令,设任意的,则,故为减函数,所以,故,此时即.【点睛】直角三角形中的内接正方形的问题,可借助于解直角三角形和相似三角形得到各边与角的关系,三角函数式的最值问题,可利用三角变换化简再利用三角函数的性质、换元法等可求原三角函数式的最值.18、【解析】阅读程序框图可知,此程序表示的函数为,当时,得.当时,得.试题解析:此程序表示的函数为,当时,得.当时,得.故当输出的时,输入的,故答案为.19、(1),,与的关系:,证明见解析(2)在上单调递减,证明见解析【解析】(1)通过函数解析式计算出,通过计算证明.(2)通过来证得在区间上单调递减.【小问1详解】,.证明:..【小问2详解】在区间上递减.证明如下:且.在上单调递减.20、(1)(2)(3)图象见解析,单调递减区间是,单调递增区间是,最小值为1【解析】(1)根据题意可得,平方即可求解.(2)由题意比较与大小,从而可得出答案.(3)由(2)得到的函数关系,作出函数图像,根据图像可得函数的单调区间和最小值.【小问1详解】由,得且,解得,;所以方程的解集为【小问2详解】由已知得.【小问3详解】函数的图象如图实线所示:函数的单调递减区间是,单调递增区间是,其最小值为1.21、(1)详见解析;(2)详见解析.【解析】(1)由题可得,进而可得平面,因为,,所以四边形为平行四边形,即,从而得出平面,平面平面,进而证得平面(2)由题可先证明四边形为正方形,连接,则,再证得平面,进而证得平面平面.【详解】证明:(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年浙江省嘉兴市海关公开招聘人员备考题库及一套完整答案详解
- 2025年中山大学肿瘤防治中心放疗科何立儒教授课题组自聘技术员招聘备考题库及一套答案详解
- 2025中信国安实业集团有限公司专业技术人员常态化招聘11人模拟笔试试题及答案解析
- 贵阳市观山湖区第八中学2026年春季学期临聘教师招聘备考题库及1套参考答案详解
- 2025年阿拉尔市汇农市场运营管理有限公司招聘备考题库含答案详解
- 2025年杭州之江湾股权投资基金管理有限公司招聘备考题库及答案详解1套
- 2025年天津北海油人力资源咨询服务有限公司招聘外包工作人员备考题库含答案详解
- 2025浙江宁波国富商业保理有限公司招聘1人笔试备考重点题库及答案解析
- 2025贵州黔西南州人民医院秋季赴省内外高校引进高层次人才和急需紧缺人才16人笔试备考重点题库及答案解析
- 2025年武汉国有企业招聘泛半导体产业园招商运营专业人才5人备考题库含答案详解
- 《台式香肠烤制方法》课件
- 常用计量值控制图系数表
- 马克思主义经典著作选读智慧树知到课后章节答案2023年下四川大学
- 慢性阻塞性肺疾病急性加重期机械通气
- 传染病学智慧树知到课后章节答案2023年下温州医科大学
- 湿热灭菌验证方案及报告
- 工业区位因素及其变化高一地理人教版(2019)必修二
- 2022年5月CATTI英语三级口译实务真题(最全回忆版)
- 画法几何知到章节答案智慧树2023年浙江大学
- 少年宫剪纸社团活动记录
- 生命科学前沿技术智慧树知到答案章节测试2023年苏州大学
评论
0/150
提交评论