版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省泉港六中2026届数学高一上期末考试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的减区间为()A. B.C. D.2.某几何体的三视图如图所示,则该几何的体积为A.16+8 B.8+8C.16+16 D.8+163.等于A. B.C. D.4.定义在上的奇函数满足,且当时,,则()A. B.2C. D.5.函数,值域是()A. B.C. D.6.已知二次函数在区间(2,3)内是单调函数,则实数的取值范围是()A.或 B.C.或 D.7.“”是“幂函数在上单调递增”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.在平面直角坐标系中,角与角项点都在坐标原点,始边都与x轴的非负半轴重合,它们的终边关于y轴对称,若,则()A. B.C. D.9.已知,则=()A. B.C. D.10.命题:,的否定是()A., B.,C., D.,二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若对恒成立,则实数的取值范围是___________.12.已知,则的值是________,的值是________.13.已知函数,若,则的取值范围是__________14.已知函数f(x)=(a>0,a≠1)是偶函数,则a=_________,则f(x)的最大值为________.15.已知函数是定义在上的奇函数,当时,为常数),则=_________.16.已知,,,则有最大值为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知角的顶点与原点重合,始边与轴的非负半轴重合,它的终边在直线上.(1)求的值;(2)求值18.已知函数(,,),其部分图像如图所示.(1)求函数的解析式;(2)若,且,求的值.19.设为奇函数,为常数.(1)求的值(2)若对于上的每一个的值,不等式恒成立,求实数的取值范围.20.已知函数满足,且.(1)求a和函数的解析式;(2)判断在其定义域的单调性.21.已知.(1)若为第四象限角且,求的值;(2)令函数,,求函数的递增区间.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】先气的函数的定义域为,结合二次函数性质和复合函数的单调性的判定方法,即可求解.【详解】由题意,函数有意义,则满足,即,解得,即函数的定义域为,令,可得其开口向下,对称轴的方程为,所以函数在区间单调递增,在区间上单调递减,根据复合函数的单调性,可得函数在上单调递减,即的减区间为.故选:D.2、A【解析】由已知中的三视图可得该几何体是一个半圆柱和正方体的组合体,半圆柱底面半径为2,故半圆柱的底面积半圆柱的高故半圆柱的体积为,长方体的长宽高分别为故长方体的体积为故该几何体的体积为,选A考点:三视图,几何体的体积3、A【解析】分析:由条件利用诱导公式、两角和差的余弦公式化简所给的式子,可得结果.详解:.故选:A.点睛:本题主要考查诱导公式、两角和差的余弦公式的应用,属于基础题.4、D【解析】根据题意,由,分析可得,即可得函数的周期为4,则有,由函数的解析式以及奇偶性可得的值,即可得答案【详解】解:根据题意,函数满足,即,则函数的周期为4,所以又由函数为奇函数,则,又由当,时,,则;则有;故选:【点睛】本题考查函数奇偶性、周期性的应用,注意分析得到函数的周期,属于中档题5、A【解析】令,求出g(t)的值域,再根据指数函数单调性求f(x)值域.【详解】令,则,则,故选:A.6、A【解析】根据开口方向和对称轴及二次函数f(x)=x2-2ax+1的单调区间求参数的取值范围即可.【详解】根据题意二次函数f(x)=x2-2ax+1开口向上,单调递增区间为,单调减区间,因此当二次函数f(x)=x2-2ax+1在区间(2,3)内为单调增函数时a≤2,当二次函数f(x)=x2-2ax+1在区间(2,3)内为单调减函数时a≥3,综上可得a≤2或a≥3.故选:A.7、A【解析】由幂函数的概念,即可求出或,再根据或均满足在上单调递增以及充分条件、必要条件的概念,即可得到结果.【详解】若为幂函数,则,解得或,又或都满足在上单调递增故“”是“幂函数在上单调递增”的充分不必要条件故选:A.8、A【解析】利用终边相同的角和诱导公式求解.【详解】因为角与角的终边关于y轴对称,所以,所以,故选:A9、B【解析】根据两角和的正切公式求出,再根据二倍角公式以及同角三角函数的基本关系将弦化切,代入求值即可.【详解】解:解得故选:【点睛】本题考查三角恒等变换以及同角三角函数的基本关系,属于中档题.10、D【解析】由全称量词命题与存在量词命题的否定判断即可.【详解】由全称量词命题与存在量词命题的否定,可知原命题的否定为,故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】需要满足两个不等式和对都成立.【详解】和对都成立,令,得在上恒成立,当时,只需即可,解得;当时,只需即可,解得(舍);综上故答案为:12、①.②.【解析】将化为可得值,通过两角和的正切公式可得的值.【详解】因为,所以;,故答案为:,.13、【解析】画出函数图象,可得,,再根据基本不等式可求出.【详解】画出的函数图象如图,不妨设,因为,则由图可得,,可得,即,又,当且仅当取等号,因为,所以等号不成立,所以解得,即的取值范围是.故答案为:.14、①.②.【解析】根据偶函数f(-x)=f(x)即可求a值;分离常数,根据单调性即可求最大值,或利用基本不等式求最值.【详解】是偶函数,,则,则,即,则,则,则,当且仅当,即,则时取等号,即的最大值为,故答案为:,15、【解析】先由函数奇偶性,结合题意求出,计算出,即可得出结果.【详解】因为为定义在上的奇函数,当时,,则,解得,则,所以,因此.故答案为:.16、4【解析】分析:直接利用基本不等式求xy的最大值.详解:因为x+y=4,所以4≥,所以故答案为4.点睛:(1)本题主要考查基本不等式,意在考查学生对该基础知识的掌握水平.(2)利用基本不等式求最值时,一定要注意“一正二定三相等”,三者缺一不可.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或;(2)或;【解析】(1)在直线上任取一点,由已知角的终边过点,利用诱导公式与三角函数定义即可求解,要注意分类讨论m的正负.(2)先利用商的关系化简原式为,结合第一问利用三角函数定义分别求得与,要注意分类讨论m的正负.【详解】(1)在直线上任取一点,由已知角的终边过点,,,利用诱导公式与三角函数定义可得:,当时,;当时,(2)原式同理(1)利用三角函数定义可得:,当时,,,此时原式;当时,,,此时原式;【点睛】易错点睛:本题考查三角函数化简求值,解本题时要注意的事项:角的终边在直线上,但未确定在象限,要分类讨论,考查学生的转化能力与运算解能力,属于中档题.18、(Ⅰ);(Ⅱ).【解析】【试题分析】(1)根据图像的最高点求得,根据函数图像的零点和最小值位置可知函数的四分之一周期为,由此求得,代入函数上一个点,可求得的值.(2)利用同角三角函数关系和二倍角公式,求得的值,代入所求并计算得结果.【试题解析】(Ⅰ)由图可知,图像过点(Ⅱ),且19、(1);(2).【解析】(1)根据函数为奇函数求参数值,注意验证是否符合题设.(2)将问题转化为在上恒成立,根据解析式判断的区间单调性,即可求的范围.小问1详解】由题设,,∴,即,故,当时,,不成立,舍去;当时,,验证满足.综上:.【小问2详解】由,即,又为增函数,由(1)所得解析式知:上递增,∴在单调递增-故,故.20、(1);;(2)在其定义域为单调增函数.【解析】(1)由,可得,再由,可求出的值,从而可得函数的解析式;(2)利用函数的单调性定义进行判断即可【详解】解:(1)由,得,,得;所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护理研究资金申请
- 护理分级标准的绩效评估
- 2025年办公家具租赁服务合同协议
- 增强现实与文化遗产展示
- 增强现实视觉追踪
- 处理机隐私增强技术
- 2025移动应用服务新路径研究报告
- 基于缓存的SAX解析性能优化
- 基础设施协同-第1篇
- 承揽合同(2025年养老咨询)
- 2026年教师资格之中学综合素质考试题库500道及答案【真题汇编】
- 广东省广州市越秀区2024-2025学年上学期期末考试九年级数学试题
- 课标考试2025年版《义务教育数学课程标准》测试卷试题库(和答案)
- 肝胆科学科发展规划
- 2024年保安员资格考试初级理论知识试题库及答案(共290题)
- 心脑血管疾病的健康管理
- 2024年浙江省大学生物理竞赛
- 普通诊所污水、污物、粪便处理方案 及周边环境情况说明
- 国开02150-计算机网络(本)机考复习资料
- 设计变更通知单四篇
- 领英招聘官考试试题
评论
0/150
提交评论