版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届黑龙江省大庆市让胡路区铁人中学高二上数学期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等差数列的前n项和为Sn,首项a1=1,若,则公差d的取值范围为()A. B.C. D.2.某次数学考试试卷评阅采用“双评+仲裁”的方式,规则如下:两位老师独立评分,称为一评和二评,当两者所评分数之差的绝对值小于或等于分时,取两者平均分为该题得分;当两者所评分数之差的绝对值大于分时,再由第三位老师评分,称之为仲裁,取仲裁分数和一、二评中与之接近的分数的平均分为该题得分.如图所示,当,,时,则()A. B.C.或 D.3.等差数列的公差为2,若成等比数列,则()A.72 B.90C.36 D.454.数列,,,,…,的通项公式可能是()A. B.C. D.5.若随机事件满足,,,则事件与的关系是()A.互斥 B.相互独立C.互为对立 D.互斥且独立6.已知向量,则“”是“”的()A充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件7.如果椭圆上一点到焦点的距离等于6,则线段的中点到坐标原点的距离等于()A.7 B.10C.12 D.148.2021年11月,郑州二七罢工纪念塔入选全国职工爱国主义教育基地名单.某数学建模小组为测量塔的高度,获得了以下数据:甲同学在二七广场A地测得纪念塔顶D的仰角为45°,乙同学在二七广场B地测得纪念塔顶D的仰角为30°,塔底为C,(A,B,C在同一水平面上,平面ABC),测得,,则纪念塔的高CD为()A.40m B.63mC.m D.m9.双曲线的左、右焦点分别为、,点P在双曲线右支上,,,则C的离心率为()A. B.2C. D.10.南宋数学家杨辉所著的《详解九章算法》中有如下俯视图所示的几何体,后人称之为“三角垛”.其最上层有1个球,第二层有3个球,第三层有6个球,…,则第十层球的个数为()A.45 B.55C.90 D.11011.已知函数的定义域为,若,则()A. B.C. D.12.函数,则的值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知点是抛物线的准线与x轴的交点,F为抛物线的焦点,P是抛物线上的动点,则最小值为_____14.曲线在点M(π,0)处的切线方程为________15.在空间直角坐标系中,已知点A,若点P满足,则_______16.已知函数,则满足实数的取值范围是__三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)王同学入读某大学金融专业,过完年刚好得到红包6000元,她计划以此作为启动资金进行理投资,每月月底获得的投资收益是该月月初投入资金的20%,并从中拿出1000元作为自己的生活费,余款作为资金全部投入下个月,如此继续.设第n个月月底的投资市值为an.(1)求证:数列{-5000}为等比数列;(2)如果王同学想在第二年过年的时候给奶奶买一台全身按摩椅(商场标价为12899元),将一年后投资市值全部取出来是否足够?18.(12分)求证:(1)是上的偶函数;(2)是上的奇函数.19.(12分)如图1,四边形为直角梯形,,,,,为上一点,为的中点,且,,现将梯形沿折叠(如图2),使平面平面.(1)求证:平面平面.(2)能否在边上找到一点(端点除外)使平面与平面所成角的余弦值为?若存在,试确定点的位置,若不存在,请说明理由.20.(12分)在平面直角坐标系xOy中,已知椭圆E:(a>b>0)的左、右焦点分别为F1,F2,离心率为.点P是椭圆上的一动点,且P在第一象限.记的面积为S,当时,.(1)求椭圆E的标准方程;(2)如图,PF1,PF2的延长线分别交椭圆于点M,N,记和的面积分别为S1和S2.(i)求证:存在常数λ,使得成立;(ii)求S2-S1的最大值.21.(12分)已知圆C经过点,,且它的圆心C在直线上.(1)求圆C的方程;(2)过点作圆C的两条切线,切点分别为M,N,求三角形PMN的面积.22.(10分)已知点A(1,2)在抛物线C∶上,过点A作两条直线分别交抛物线于点D,E,直线AD,AE的斜率分别为kAD,kAE,若直线DE过点P(-1,-2)(1)求抛物线C的方程;(2)求直线AD,AE的斜率之积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】该等差数列有最大值,可分析得,据此可求解.【详解】,故,故有故d取值范围为.故选:A2、B【解析】按照框图考虑成立和不成立即可求解.【详解】因为,,,所以输入,当成立时,,即,解得,,满足条件;当不成立时,,即,解得,,不满足条件;故.故选:B.3、B【解析】由题意结合成等比数列,有即可得,进而得到、,即可求.【详解】由题意知:,,又成等比数列,∴,解之得,∴,则,∴,故选:B【点睛】思路点睛:由其中三项成等比数列,利用等比中项性质求项,进而得到等差数列的基本量1、由成等比,即;2、等差数列前n项和公式的应用.4、D【解析】利用数列前几项排除A、B、C,即可得解;【详解】解:由,排除A,C,由,排除B,分母为奇数列,分子为,故数列的通项公式可以为,故选:D5、B【解析】利用独立事件,互斥事件和对立事件的定义判断即可【详解】解:因为,,又因为,所以有,所以事件与相互独立,不互斥也不对立故选:B.6、A【解析】根据得出,根据充分必要条件的定义可判断.【详解】解:∵,向量,,∴,即,根据充分必要条件的定义可判断:“”是“”的充分不必要条件,故选:A.7、A【解析】可由椭圆方程先求出,在利用椭圆的定义求出,利用已知求解出,再取的中点,连接,利用中位线,即可求解出线段的中点到坐标原点的距离.【详解】因为椭圆,,所以,结合得,,取的中点,连接,所以为的中位线,所以.故选:A.8、B【解析】设,先表示出,再利用余弦定理即可求解.【详解】如图所示,,设塔高为,因为平面ABC,所以,所以,又,即,解得.故选:B.9、C【解析】由,所以为直角三角形,根据双曲线的定义结合勾股定理可得答案.【详解】由,所以为直角三角形.,根据双曲线的定义可得所以,即,即,所以故选:C10、B【解析】根据题意,发现规律并将规律表达出来,第层有个球.【详解】根据规律,可以得知:第一层有个球;第二层有个球;第三层有个球,则根据规律可知:第层有个球设第层的小球个数为,则有:故第十层球的个数为:故选:11、D【解析】利用导数的定义可求得的值.【详解】由导数的定义可得.故选:D.12、B【解析】求出函数的导数,代入求值即可.【详解】函数,故,所以,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用已知条件求出p,设出P的坐标,然后求解的表达式,利用基本不等式即可得出结论【详解】解:由题意可知:,设点,P到直线的距离为d,则,所以,当且仅当x时,的最小值为,此时,故答案为:【点睛】本题考查抛物线的简单性质的应用,基本不等式的应用,属于中档题14、【解析】由题意可得,据此可得切线的斜率,结合切点坐标即可确定切线方程.【详解】由函数的解析式可得:,所求切线的斜率为:,由于切点坐标为,故切线方程为:.【点睛】导数运算及切线的理解应注意的问题一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点三是复合函数求导的关键是分清函数的结构形式.由外向内逐层求导,其导数为两层导数之积.15、【解析】设,表示出,,根据即可得到方程组,解得、、,即可求出的坐标,即可得到的坐标,最后根据向量模的坐标表示计算可得;【详解】解:设,所以,,因为,所以,所以,解得,即,所以,所以;故答案为:16、【解析】分别对,分别大于1,等于1,小于1的讨论,即可.【详解】对,分别大于1,等于1,小于1的讨论,当,解得当,不存在,当时,,解得,故x的范围为点睛】本道题考查了分段函数问题,分类讨论,即可,难度中等三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)足够【解析】(1)由题意可得出递推关系,变形后利用等比数列的定义求证即可;(2)由(1)利用等比数列的通项公式求出,再求出,再计算即可得出结论.【小问1详解】依题意,第1个月底股票市值则又∴数列是首项为1200,公比为1.2的等比数列.【小问2详解】由(1)知∴∵,所以王同学将一年理财投资所得全部取出来是足够的.18、(1)证明见详解(2)证明见详解【解析】利用函数奇偶性的定义证明即可【小问1详解】由题意函数定义域为且故是上的偶函数【小问2详解】由题意函数定义域为且故是上奇函数19、(1)证明见解析.(2)存在点,为线段中点【解析】(1)根据线面垂直的判定定理和面面垂直的判定定理,即可证得平面平面;(2)以为坐标原点建立如图所示的空间直角坐标系,求得平面和平面的法向量,利用向量的夹角公式,即可求解.【详解】(1)在直角梯形中,作于于,连接,则,,则,,则,在直角中,可得,则,所以,故,且折叠后与位置关系不变.又因为平面平面,且平面平面,所以平面,因为平面,所以平面平面.(2)在中,由,为的中点,可得.又因为平面平面,且平面平面,所以平面,则以为坐标原点建立如图所示的空间直角坐标系,则,,,则,,设平面的法向量为,则,令,可得平面的法向量为,假设存在点使平面与平面所成角的余弦值为,且(),∵,∴,故,又,∴,又由,设平面的法向量为,可得,令得,∴,解得,因此存在点且为线段中点时使平面与平面所成角的余弦值为.本题考查了面面垂直的判定与证明,以及空间角的求解及应用,意在考查学生的空间想象能力和逻辑推理能力,解答中熟记线面位置关系的判定定理和性质定理,通过严密推理是线面位置关系判定的关键,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.20、(1)(2)(i)存在常数,使得成立;(ii)的最大值为.【解析】(1)求点P的坐标,再利用面积和离心率,可以求出,然后就可以得到椭圆的标准方程;(2)设点的坐标和直线方程,联立方程,解出的y坐标值与P的坐标之间的关系,求以焦距为底边的三角形面积;利用均值定理当且仅当时取等号,求最大值.【小问1详解】先求第一象限P点坐标:,所以P点的坐标为,所以,所以椭圆E的方程为【小问2详解】设,易知直线和直线的坐标均不为零,因为,所以设直线的方程为,直线的方程为,由所以,因为,,所以所以同理由所以,因为,,所以所以,因为,,(i)所以所以存在常数,使得成立.(ii),当且仅当,时取等号,所以的最大值为.21、(1);(2).【解析】(1)由题设知,设圆心,应用两点距离公式列方程求参数a,进而确定圆心坐标、半径,写出圆C的方程;(2)利用两点距离公式、切线的性质可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年广西壮族自治区胸科医院(广西壮族自治区第四人民医院)科研助理招聘备考题库及答案详解参考
- 2025年郴州市第四人民医院公开招聘(引进)高层次专业技术人才备考题库及参考答案详解
- 2025年“才聚齐鲁成就未来”山东颐养健康产业发展集团有限公司2026届高校毕业生校园招聘463人备考题库及一套完整答案详解
- 2025中移铁通临沧分公司招聘笔试备考重点试题及答案解析
- 2026江苏省省级机关医院(南京医科大学附属老年医院)博士专项招聘7人备考考试题库及答案解析
- 2025年望谟县消防救援大队面向社会公开招聘政府专职消防队伍队员25人的备考题库及参考答案详解1套
- 2025年中国人民财产保险股份有限公司湖州市分公司人才招聘10人备考题库及一套答案详解
- 吉林大学第二医院2025年聘用制、合同制医疗技术人员招聘备考题库及参考答案详解1套
- 2025年贵州省公证协会招聘工作人员备考题库及1套参考答案详解
- 2025年南昌县向塘实验学校面向社会招聘教师备考题库含答案详解
- 离婚财产分割培训课件
- 口腔科种植牙预防感染要点培训指南
- 小学语文板书基本功培训
- 2025甘肃酒泉市公安局招聘留置看护岗位警务辅助人员30人(第三批)考试笔试参考题库附答案解析
- 测绘安全生产作业规范
- 2026年焦作大学单招职业适应性考试必刷测试卷必考题
- 安全生产先进评选方案
- 钣金折弯工艺培训课件
- 肛门指检课件
- 城市更新交通系统优化实施技术方案
- 高一年级分科主题班会+课件-2025-2026学年上学期
评论
0/150
提交评论