甘肃省临夏州临夏中学2026届高二上数学期末检测模拟试题含解析_第1页
甘肃省临夏州临夏中学2026届高二上数学期末检测模拟试题含解析_第2页
甘肃省临夏州临夏中学2026届高二上数学期末检测模拟试题含解析_第3页
甘肃省临夏州临夏中学2026届高二上数学期末检测模拟试题含解析_第4页
甘肃省临夏州临夏中学2026届高二上数学期末检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省临夏州临夏中学2026届高二上数学期末检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列求导不正确的是()A B.C. D.2.设,若函数,有大于零的极值点,则A. B.C. D.3.已知、是平面直角坐标系上的直线,“与的斜率相等”是“与平行”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分条件也非必要条件4.已知点是抛物线的焦点,点为抛物线上的任意一点,为平面上点,则的最小值为A.3 B.2C.4 D.5.的展开式中,常数项为()A. B.C. D.6.如图,四面体-,是底面△的重心,,则()A B.C. D.7.如图在平行六面体中,与的交点记为.设,,,则下列向量中与相等的向量是()A. B.C. D.8.把直线绕原点逆时针转动,使它与圆相切,则直线转动的最小正角度A. B.C. D.9.“”是“函数在上有极值”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.已知等差数列满足,,数列满足,记数列的前n项和为,若对于任意的,,不等式恒成立,则实数t的取值范围为()A. B.C. D.11.等比数列的各项均为正数,且,则()A.5 B.10C.4 D.12.已知函数的导函数的图像如图所示,则下列说法正确的是()A.是函数的极大值点B.函数在区间上单调递增C.是函数的最小值点D.曲线在处切线的斜率小于零二、填空题:本题共4小题,每小题5分,共20分。13.已知圆和直线.(1)求直线l所经过的定点的坐标,并判断直线与圆的位置关系;(2)求当k取什么值,直线被圆截得的弦最短,并求这条最短弦的长.14.已知长轴长为,短轴长为的椭圆的面积为.现用随机模拟的方法来估计的近似值,先用计算机产生个数对,,其中,均为内的随机数,再由计算机统计发现其中满足条件的数对有个,由此可估计的近似值为______________15.已知椭圆C:,点M与C的焦点不重合,若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则_________.16.在下列三个问题中:①甲乙二人玩胜负游戏:每人一次抛掷两枚质地均匀的硬币,如果规定:同时出现正面或反面算甲胜,一个正面、一个反面算乙胜,那么这个游戏是公平的;②掷一枚骰子,估计事件“出现三点”的概率,当抛掷次数很大时,此事件发生的频率接近其概率;③如果气象预报1日—30日的下雨概率是,那么1日—30日中就有6天是下雨的;其中,正确的是___________.(用序号表示)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆.(1)若直线与圆相交于两点,弦的中点为,求直线的方程;(2)若斜率为1的直线被圆截得的弦为,以为直径的圆经过圆的圆心,求直线的方程.18.(12分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马中,侧棱底面,且,过棱的中点,作交于点,连接(1)证明:.试判断四面体是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(2)记阳马的体积为,四面体的体积为,求的值;(3)若面与面所成二面角的大小为,求的值19.(12分)已知圆经过坐标原点和点,且圆心在轴上.(1)求圆的方程;(2)已知直线与圆相交于A、B两点,求所得弦长的值.20.(12分)已知函数(其中a常数)(1)求的单调递增区间;(2)若,时,的最小值为4,求a的值21.(12分)中,内角、、所对的边为、、,.(1)求角的大小;(2)若、、成等差数列,且,求边长的值.22.(10分)一个长方体的平面展开图及该长方体的直观图的示意图如图所示(1)请将字母F,G,H标记在长方体相应的顶点处(不需说明理由):(2)若且有下面两个条件:①;②,请选择其中一个条件,使得DF⊥平面,并证明你的结论

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由导数的运算法则、复合函数的求导法则计算后可判断【详解】A:;B:;C:;D:故选:C2、B【解析】设,则,若函数在x∈R上有大于零的极值点即有正根,当有成立时,显然有,此时.由,得参数a的范围为.故选B考点:利用导数研究函数的极值3、D【解析】根据直线平行与直线斜率的关系,即可求解.【详解】解:与的斜率相等”,“与可能重合,故前者不可以推出后者,若与平行,与的斜率可能都不存在,故后者不可以推出前者,故前者是后者的既非充分条件也非必要条件,故选:D.4、A【解析】作垂直准线于点,根据抛物线的定义,得到,当三点共线时,的值最小,进而可得出结果.【详解】如图,作垂直准线于点,由题意可得,显然,当三点共线时,的值最小;因为,,准线,所以当三点共线时,,所以.故选A【点睛】本题主要考查抛物线上任一点到两定点距离的和的最值问题,熟记抛物线的定义与性质即可,属于常考题型.5、A【解析】写出展开式通项,令的指数为零,求出参数的值,代入通项计算即可得解.【详解】的展开式通项为,令,可得,因此,展开式中常数项为.故选:A.6、B【解析】根据空间向量的加减运算推出,进而得出结果.【详解】因为,所以,故选:B7、B【解析】利用空间向量的加法和减法法则可得出关于、、的表达式.【详解】故选:B.8、B【解析】根据直线过原点且与圆相切,求出直线的斜率,再数形结合计算最小旋转角【详解】解析:由题意,设切线为,∴.∴或.∴时转动最小∴最小正角为.故选B.【点睛】本题考查直线与圆的位置关系,属于基础题9、B【解析】对求导,取得函数在上有极值的等价条件,再根据充分条件和必要条件的定义进行判断即可【详解】解:,则,令,可得,当时,,当时,,即在上单调递减,在上单调递增,所以,函数在处取得极小值,若函数在上有极值,则,,因为,但是由推不出,因此是函数在上有极值的必要不充分条件故选:B10、B【解析】由等差数列基本量法求出通项公式,用裂项相消法求得,求出的最大值,然后利用关于的不等式是一次不等式列出满足的不等关系求得其范围【详解】设等差数列公差为,则由已知得,解得,∴,,∴,易知数列是递增数列,且,∴若对于任意的,,不等式恒成立,即,又,∴,解得或故选:B【点睛】本题考查求等差数列的通项公式,考查裂项相消法求数列的和,考查不等式恒成立问题,解题关键是掌握不等式恒成立问题的转化与化归思想,不等式恒成立首先转化为求数列的单调性与最值,其次转化为一次不等式恒成立11、A【解析】利用等比数列的性质及对数的运算性质求解.【详解】由题有,则=5.故选:A12、B【解析】根据导函数的图象,得到函数的单调区间与极值点,即可判断;【详解】解:由导函数的图象可知,当时,当时,当时,当或时,则在上单调递增,在上单调递减,所以函数在处取得极小值即最小值,所以是函数的极小值点与最小值点,因为,所以曲线在处切线的斜率大于零,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、(1)直线过定点P(4,3),直线和圆总有两个不同交点(2)k=1,【解析】(1)把直线方程化为点斜式方程即可;(2)由圆的性质知,当直线与PC垂直时,弦长最短.【小问1详解】直线方程可化为,则直线过定点P(4,3),又圆C标准方程为,圆心为,半径为,而,所以点P在圆内,所以不论k取何值,直线和圆总有两个不同交点.【小问2详解】由圆的性质知,当直线与PC垂直时,弦长最短.,所以k=1时弦长最短.弦长为.14、【解析】由,,根据表示的数对对应的点在椭圆的内部,且在第一象限,求出满足条件的点的概率,再转化为几何概型的面积类型求解【详解】,,表示的数对对应的点在椭圆的内部,且在第一象限,其面积为,故,得故答案为:.【点睛】本题主要考查了几何型概率应用,解题关键是掌握几何型概率求法,考查了分析能力和计算能力,属于基础题.15、【解析】设M,N的中点坐标为P,,则;由于,化简可得,根据椭圆的定义==6,所以12.考点:1.椭圆的定义;2.两点距离公式.16、①②【解析】以甲乙获胜概率是否均为来判断游戏是否公平,并以此来判断①的正确性;以频率和概率的关系来判断②③的正确性.【详解】①中:甲乙二人玩胜负游戏:每人一次抛掷两枚质地均匀的硬币,可得4种可能的结果:(正,正),(正,反),(反,正),(反,反)则“同时出现正面或反面”的概率为,“一个正面、一个反面”的概率为即甲乙二人获胜的概率均为,那么这个游戏是公平的.判断正确;②中:“掷一枚骰子出现三点”是一个随机事件,当抛掷次数很大时,此事件发生的频率会稳定于其概率值,故此事件发生的频率接近其概率.判断正确;③中:气象预报1日—30日的下雨概率是,那么1日—30日每天下雨的概率均是,每天都有可能下雨也可能不下雨,故1日—30日中出现下雨的天数是随机的,可能是0天,也可能是1天、2天、3天……,不一定是6天.判断错误.故答案为:①②三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(或(2)或【解析】(1)由条件可得,由此可求直线的斜率,由点斜式求直线的方程;(2)由条件可求到直线的距离,利用待定系数法求直线的方程.【小问1详解】圆,得圆心,半径,直线的斜率:,设直线的斜率为,有,解得.所求直线的方程为:.(或【小问2详解】直线m被圆C截得的弦EF为直径的圆经过圆心C,∴圆心C到直线的距离为.设直线方䄇为,则解得或直线的方程为:或18、(1)证明见解析,是鳖臑,四个面的直角分别为∠DEB,∠DEF,∠EFB,∠DFB(2)4(3)【解析】(1)由直线与直线,直线与平面的垂直的转化证明得出PB⊥EF,DE∩FE=E,所以PB⊥平面DEF,即可判断DE⊥平面PBC,PB⊥平面DEF,可知四面体BDEF的四个面都是直角三角形,确定直角即可;(2)PD是阳马P−ABCD的高,DE是鳖臑D−BCE的高,BC⊥CE,,由此能求出的值(3)根据公理2得出DG是平面DEF与平面ACBD的交线.利用直线与平面的垂直判断出DG⊥DF,DG⊥DB,根据平面角的定义得出∠BDF是面DEF与面ABCD所成二面角的平面角,转化到直角三角形求解即可【小问1详解】因为PD⊥底面ABCD,所以PD⊥BC,由底面ABCD为长方形,有BC⊥CD,而PD∩CD=D,所以BC⊥平面PCD.而DE⊂平面PDC,所以BC⊥DE又因为PD=CD,点E是PC的中点,所以DE⊥PC而PC∩CB=C,所以DE⊥平面PBC.而PB⊂平面PBC,所以PB⊥DE又PB⊥EF,DE∩FE=E,所以PB⊥平面DEF由DE⊥平面PBC,PB⊥平面DEF,可知四面体BDEF的四个面都是直角三角形,即四面体BDEF是一个鳖臑,其四个面的直角分别为∠DEB,∠DEF,∠EFB,∠DFB;【小问2详解】由已知,PD是阳马P−ABCD的高,∴,由(Ⅰ)知,,在Rt△PDC中,∵PD=CD,点E是PC的中点,∴,∴【小问3详解】如图所示,在面BPC内,延长BC与FE交于点G,则DG是平面DEF与平面ABCD的交线由(1)知,PB⊥平面DEF,所以PB⊥DG又因为PD⊥底面ABCD,所以PD⊥DG.而PD∩PB=P,所以DG⊥平面PBD所以DG⊥DF,DG⊥DB故∠BDF是面DEF与面ABCD所成二面角的平面角,设PD=DC=1,BC=λ,有,在Rt△PDB中,由DF⊥PB,得,则,解得所以故当面DEF与面ABCD所成二面角的大小为时,19、(1);(2).【解析】(1)根据条件可以确定圆心坐标和半径,写出圆的方程;(2)先求圆心到直线的距离,结合勾股定理可求弦长.【详解】(1)由题意可得,圆心为(2,0),半径为2.则圆的方程为;(2)圆心(2,0)到l的距离为d,=1,.【点睛】圆的方程求解方法:(1)直接法:确定圆心,求出半径,写出方程;(2)待定系数法:设出圆的方程,可以是标准方程也可以是一般式方程,根据条件列出方程,求解系数即可.20、(1);(2).【解析】(1)利用三角恒等变换思想化简函数解析式为,然后解不等式,可得答案;(2)由计算出的取值范围,利用正弦函数的基本性质可求得函数的最小值,进而可求得实数的值.【详解】(1),令,解得.所以,函数的单调递增区间为;(2)当时,,所以,所以,解得.21、(1);(2).【解析】(1)利用正弦定理可求得的值,结合角的取值范围可求得角的值;(2)由三角形的面积公式可求得的值,由已知可得,利用余弦定理可得出关于的等式,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论