贵州省都匀第一中学2026届高二数学第一学期期末复习检测试题含解析_第1页
贵州省都匀第一中学2026届高二数学第一学期期末复习检测试题含解析_第2页
贵州省都匀第一中学2026届高二数学第一学期期末复习检测试题含解析_第3页
贵州省都匀第一中学2026届高二数学第一学期期末复习检测试题含解析_第4页
贵州省都匀第一中学2026届高二数学第一学期期末复习检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州省都匀第一中学2026届高二数学第一学期期末复习检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在平面直角坐标系中,椭圆的左、右焦点分别为,,过且垂直于轴的直线与交于,两点,与轴交于点,,则的离心率为()A. B.C. D.2.已知椭圆:的左、右焦点为,,上顶点为P,则()A.为锐角三角形 B.为钝角三角形C.为直角三角形 D.,,三点构不成三角形3.由于受疫情的影响,学校停课,同学们通过三种方式在家自主学习,现学校想了解同学们对假期学习方式的满意程度,收集如图1所示的数据;教务处通过分层抽样的方法抽取4%的同学进行满意度调查,得到的数据如图2.下列说法错误的是()A.样本容量为240B.若,则本次自主学习学生的满意度不低于四成C.总体中对方式二满意学生约为300人D.样本中对方式一满意的学生为24人4.2019年末,武汉出现新型冠状病毒肺炎(COVID—19)疫情,并快速席卷我国其他地区,传播速度很快.因这种病毒是以前从未在人体中发现的冠状病毒新毒株,所以目前没有特异治疗方法,防控难度很大武汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从2月7日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和与确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人在排查期间,一户6口之家被确认为“与确诊患者的密切接触者”,这种情况下医护人员要对其家庭成员随机地逐一进行“核糖核酸”检测,若出现阳性,则该家庭为“感染高危户”.设该家庭每个成员检测呈阳性的概率均为p(0<p<1)且相互独立,该家庭至少检测了5个人才能确定为“感染高危户”的概率为f(p),当p=p0时,f(p)最大,则p0=()A. B.C. D.5.设抛物线C:的焦点为,准线为.是抛物线C上异于的一点,过作于,则线段的垂直平分线()A.经过点 B.经过点C.平行于直线 D.垂直于直线6.杨辉三角是二项式系数在三角形中的一种几何排列,在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中就有出现.在欧洲,帕斯卡(1623~1662)在1654年发现这一规律,比杨辉要迟了393年.如图所示,在“杨辉三角”中,从1开始箭头所指的数组成一个锯齿形数列:1,2,3,3,6,4,10,5,…,则在该数列中,第37项是A.153 B.171C.190 D.2107.过点(1,0)且与直线x-2y-2=0平行的直线方程是()A.x-2y-1=0 B.x-2y+1=0C.2x+y-2=0 D.x+2y-1=08.若直线与直线平行,则()A. B.C. D.9.在等差数列中,若的值是A.15 B.16C.17 D.1810.若x,y满足约束条件,则的最大值为()A.2 B.3C.4 D.511.在空间直角坐标系中,为直线的一个方向向量,为平面的一个法向量,且,则()A. B.C. D.12.复数,则对应的点所在的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限二、填空题:本题共4小题,每小题5分,共20分。13.已知,空间直角坐标系中,过点且一个法向量为的平面的方程为.用以上知识解决下面问题:已知平面的方程为,直线是两个平面与的交线,则直线与平面所成角的正弦值为___________.14.如图,某湖有一半径为的半圆形岸边,现决定在圆心O处设立一个水文监测中心(大小忽略不计),在其正东方向相距的点A处安装一套监测设备.为了监测数据更加准确,在半圆弧上的点B以及湖中的点C处,再分别安装一套监测设备,且,.定义:四边形及其内部区域为“直接监测覆盖区域”,设.则“直接监测覆盖区域”面积的最大值为________15.已知函数,若关于的不等式恒成立,则实数的取值范围是__________16.如图所示,将若干个点摆成三角形图案,每条边(包括两个端点)有个点,相应的图案中点的个数记为,按此规律,则___________,___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)椭圆的左、右焦点分别为,短轴的一个端点到的距离为,且椭圆过点过且不与两坐标轴平行的直线交椭圆于两点,点与点关于轴对称.(1)求椭圆的方程(2)当直线的斜率为1时,求的面积;(3)若点,求证:三点共线.18.(12分)已知圆C经过坐标原点O和点(4,0),且圆心在x轴上(1)求圆C的方程;(2)已知直线l:与圆C相交于A、B两点,求所得弦长值19.(12分)已知数列的首项为,且满足.(1)求证:数列为等比数列;(2)设,记数列的前项和为,求,并证明:.20.(12分)已知椭圆的离心率为,椭圆的短轴端点与双曲线的焦点重合,过点的直线与椭圆相交于、两点.(1)求椭圆的方程;(2)若以为直径的圆过坐标原点,求的值.21.(12分)排一张有6个歌唱节目和5个舞蹈节目的演出节目单.(1)任何两个舞蹈节目不相邻的排法有多少种?(2)歌唱节目与舞蹈节目间隔排列的方法有多少种?22.(10分)在三棱柱中,侧面正方形的中心为点平面,且,点满足(1)若平面,求的值;(2)求点到平面的距离;(3)若平面与平面所成角的正弦值为,求的值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由题意结合几何性质可得为等腰三角形,且,所以,求出的长,结合椭圆的定义可得答案.【详解】如图,由题意轴,轴,则又为的中点,则为的中点,又,则为等腰三角形,且,所以将代入椭圆方程得,,即所以,则由椭圆的定义可得,即则椭圆的离心率故选:B2、A【解析】根据题意求得,要判断的形状,只需要看是什么角即可,利用余弦定理判断,从而可得结论.【详解】解:由椭圆:,得,则,则,所以且为锐角,因为,所以锐角,所以为锐角三角形.故选:A.3、B【解析】利用扇形统计图和条形统计图可求出结果【详解】选项A,样本容量为,该选项正确;选项B,根据题意得自主学习的满意率,错误;选项C,样本可以估计总体,但会有一定的误差,总体中对方式二满意人数约为,该选项正确;选项D,样本中对方式一满意人数为,该选项正确.故选:B【点睛】本题主要考查了命题真假的判断,考查扇形统计图和条形统计图等基础知识,考查运算求解能力,属于中档题4、A【解析】解设事件A为:检测了5人确定为“感染高危户”,设事件B为:检测了6人确定为“感染高危户”,则,再利用基本不等式法求解.【详解】解:设事件A为:检测了5人确定为“感染高危户”,设事件B为:检测了6人确定为“感染高危户”,则,,所以,令,则,,当且仅当,即时,等号成立,即,故选:A5、A【解析】依据题意作出焦点在轴上的开口向右的抛物线,根据垂直平分线的定义和抛物线的定义可知,线段的垂直平分线经过点,即可求解.【详解】如图所示:因为线段的垂直平分线上的点到的距离相等,又点在抛物线上,根据定义可知,,所以线段的垂直平分线经过点.故选:A.6、C【解析】根据“杨辉三角”找出数列1,2,3,3,6,4,10,5,…之间的关系即可。【详解】由题意可得从第3行起的每行第三个数:,所以第行的第三个数为在该数列中,第37项为第21行第三个数,所以该数列的第37项为故选:C【点睛】本题主要考查了归纳、推理的能力,属于中等题。7、A【解析】设出直线方程,利用待定系数法得到结果.【详解】设与直线平行的直线方程为,将点代入直线方程可得,解得则所求直线方程为.故A正确【点睛】本题主要考查两直线的平行问题,属容易题.两直线平行倾斜角相等,所以斜率相等或均不存在.所以与直线平行的直线方程可设为8、D【解析】根据两直线平行可得出关于实数的等式,由此可解得实数的值.【详解】由于直线与直线平行,则,解得.故选:D.9、C【解析】由已知直接利用等差数列的性质求解【详解】在等差数列{an}中,由a1+a2+a3=3,得3a2=3,即a2=1,又a5=9,∴a8=2a5-a2=18-1=17故选C【点睛】本题考查等差数列的通项公式,考查等差数列的性质,是基础题10、C【解析】画出约束条件的可行域,利用目标函数的几何意义即可求解【详解】作出可行域如图所示,把目标函数转化为,平移,经过点时,纵截距最大,所以的最大值为4.故选:C11、B【解析】由已知条件得出,结合空间向量数量积的坐标运算可求得实数的值.【详解】因为,则,解得.故选:B.12、C【解析】化简复数,根据复数的几何意义,即可求解.【详解】由题意,复数,所以复数对应的点为位于第三象限.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意分别求出这三个平面的法向量,设直线的方向向量为,由直线与平面与的法向量垂直,得出,由向量的夹角公式可得答案.【详解】由,解得,即直线与平面的交点坐标为平面的方程为,可得所以平面的法向量为平面的法向量为,的法向量为设直线的方向向量为,则,即取,设直线与平面所成角则故答案为:14、【解析】由题意,根据余弦定理得的值,则四边形的面积表示为,再代入面积公式化简为三角函数,根据三角函数的性质求解最大值即可.【详解】在中,,,,,,则(其中),当时,取最大值,所以“直接监测覆盖区域”面积的最大值.故答案为:.【点睛】解答本题的关键是将四边形的面积表示为,代入面积公式后化简得三角函数的解析式,再根据三角函数的性质求解最大值.15、【解析】分析:应用换元法,令,,不等式恒成立,转化为在恒成立,确定关系式,即可求得答案.详解:函数对称轴,最小值令,则恒成立,即在上.,在单调递增,,解得,即实数的取值范围是故答案为.点睛:本题考查了函数的单调性、最值问题、不等式恒成立问题以及二次函数的图象和性质等知识,考查了复合函数问题求解的换元法16、①.②.【解析】利用题中所给规律求出即可.【详解】解:由图可知,,,,,因为符合等差数列的定义且公差为所以,所以,故答案为:,.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)证明见解析.【解析】(1)根据已知求出即得椭圆的方程;(2)联立直线和椭圆的方程求出弦长和三角形的高即得解;(3)联立直线和椭圆的方程,得到韦达定理,再利用平面向量证明.【小问1详解】解:由题得,所以椭圆方程为,因为椭圆过点所以,所以所以椭圆的方程为.【小问2详解】解:由题得,所以直线的方程为即,联立直线和椭圆方程得,所以,点到直线的距离为.所以的面积为.【小问3详解】解:设直线的方程为,联立直线和椭圆的方程得,设,所以,由题得,,所以,所以,所以,又有公共点,所以三点共线.18、(1)(2)【解析】(1)求出圆心和半径,写出圆的方程;(2)求出圆心到直线距离,进而利用垂径定理求出弦长.【小问1详解】由题意可得,圆心为(2,0),半径为2.则圆的方程为;【小问2详解】由(1)可知:圆C半径为,设圆心(2,0)到l的距离为d,则,由垂径定理得:19、(1)证明见解析(2),证明见解析【解析】(1)根据等比数列的定义证明;(2)由错位相减法求得和,再由的单调性可证得不等式成立【小问1详解】由得又,数列是以为首项,以为公比的等比数列.【小问2详解】由(1)的结论有①②①②得:又为递增数列,20、(1);(2)【解析】(1)由离心率得到,由椭圆的短轴端点与双曲线的焦点重合,得到,进而可求出结果;(2)先由题意,得直线的斜率存在,设直线的方程为,联立直线与椭圆方程,设,根据韦达定理,得到,,再由以为直径的圆过坐标原点,得到,进而可求出结果.详解】(1)由题意知,∴,即,又双曲线的焦点坐标为,椭圆的短轴端点与双曲线的焦点重合,所以,∴,故椭圆的方程为.(2)解:由题意知直线的斜率存在,设直线的方程为由得:由得:设,则,,∴因为以为直径的圆过坐标原点,所以,.满足条件故.【点睛】本题主要考查椭圆的方程,以及椭圆的应用,熟记椭圆的标准方程,以及椭圆的简单性质即可,解决此类问题时,通常需要联立直线与椭圆方程,结合韦达定理、判别式等求解,属于常考题型.21、(1)(2)【解析】(1)用插空法,现排唱歌,利用产生的空排跳舞;(2)先排唱歌再排舞蹈.【小问1详解】解:先排歌唱节目有种,歌唱节目之间以及两端共有7个空位,从中选5个放入舞蹈节目,共有种方法,所以任何两个舞蹈节目不相邻的排法有种方法.【小问2详解】解:先排舞蹈节目有种方法,在舞蹈节目之间以及两端共有6个空位,恰好供6个歌唱节目放入.所以歌唱节目与舞蹈节目间隔排列的排法有种方法.22、(1);(2);(3)或.【解析】(1)连接ME,证明即可计算作答.(2)以为原点,的方向分别为轴正方向建立空间直角坐标系,借助空间向量计算点到平面的距离即可.(3)由(2)中空间直角坐标系,借助空间向量求平面与平面所成角的余弦即可计算作答.【小问1详解】在三棱

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论