广东省中山一中、仲元中学等七校2026届数学高一上期末联考模拟试题含解析_第1页
广东省中山一中、仲元中学等七校2026届数学高一上期末联考模拟试题含解析_第2页
广东省中山一中、仲元中学等七校2026届数学高一上期末联考模拟试题含解析_第3页
广东省中山一中、仲元中学等七校2026届数学高一上期末联考模拟试题含解析_第4页
广东省中山一中、仲元中学等七校2026届数学高一上期末联考模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省中山一中、仲元中学等七校2026届数学高一上期末联考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知的图象在上存在个最高点,则的范围()A. B.C. D.2.已知不等式的解集为,则不等式的解集是()A. B.C.或 D.或3.以点为圆心,且与轴相切的圆的标准方程为()A. B.C. D.4.电影《长津湖》中,炮兵雷公牺牲的一幕看哭全网,他的原型是济南英雄孔庆三.因为前沿观察所距敌方阵地较远,需要派出侦察兵利用观测仪器标定目标,再经过测量和计算指挥火炮实施射击.为了提高测量和计算的精度,军事上通常使用密位制来度量角度,将一个圆周分为6000等份,每一等份的弧所对的圆心角叫做1密位.已知我方迫击炮连在占领阵地后,测得敌人两地堡之间的距离是54米,两地堡到我方迫击炮阵地的距离均是1800米,则我炮兵战士在摧毁敌方一个地堡后,为了快速准确地摧毁敌方另一个地堡,需要立即将迫击炮转动的角度()注:(ⅰ)当扇形的圆心角小于200密位时,扇形的弦长和弧长近似相等;(ⅱ)取等于3进行计算A.30密位 B.60密位C.90密位 D.180密位5.已知扇形的圆心角为,面积为,则扇形的弧长等于(

)A. B.C. D.6.命题,则命题p的否定是()A. B.C. D.7.设,是两个不同的平面,,是两条不同的直线,且,A.若,则 B.若,则C.若,则 D.若,则8.已知正实数满足,则的最小值是()A B.C. D.9.函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<)的部分图象如图所示,则函数f(x)的解析式为()A. B.C. D.10.已知,则为()A. B.2C.3 D.或3二、填空题:本大题共6小题,每小题5分,共30分。11.若函数是R上的减函数,则实数a的取值范围是___12.扇形的半径为2,弧长为2,则该扇形的面积为______13.若扇形的面积为9,圆心角为2弧度,则该扇形的弧长为______14.每一个声音都是由纯音合成的,纯音的数学模型是函数.若的部分图象如图所示,则的解析式为________.15.已知平面向量,,,,,则的值是______16.直线与圆相交于A,B两点,则线段AB的长为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.2018年8月31日,全国人大会议通过了个人所得税法的修订办法,将每年个税免征额由42000元提高到60000元.2019年1月1日起实施新年征收个税.表1个人所得税税率表(执行至2018年12月31日)级数全年应纳税所得额所在区间(对应免征额为42000)税率(%)速算扣除数13021012603206660425X5303306063566060745162060表2个人所得税税率表(2019年1月1日起执行)级数全年应纳税所得额所在区间(对应免征额60000)税率(%)速算扣除数130210252032016920425319205305292063585920745181920(1)小王在某高新技术企业工作,全年税前收入为180000元.执行新税法后,小王比原来每年少交多少个人所得税?(2)有一种速算个税的办法:个税税额=应纳税所得额×税率-速算扣除数.①请计算表1中的数X;②假若某人2021年税后所得为200000元时,请按照这一算法计算他的税前全年应纳税所得额.18.已知,.(1)求的值;(2)求的值;(3)求的值.19.已知函数,,(1)求函数的值域;(2)若对任意的,都有恒成立,求实数a的取值范围;(3)若对任意的,都存在四个不同的实数,,,,使得,其中,2,3,4,求实数a的取值范围20.如图,动物园要建造一面靠墙的两间相同的矩形熊猫居室,如果可供建造围墙的材料总长是用宽(单位)表示所建造的每间熊猫居室的面积(单位);怎么设计才能使所建造的每间熊猫居室面积最大?并求出每间熊猫居室的最大面积?21.素有“天府之国”美称的四川省成都市,属于亚热带季风性湿润气候.据成都市气象局多年的统计资料显示,成都市从1月份到12月份的平均温(℃)与月份数(月)近似满足函数,从1月份到7月份的月平均气温的散点图如下图所示,且1月份和7月份的平均气温分别为成都全年的最低和最高的月平均气温.(1)求月平均气温(℃)与月份数(月)的函数解析式;(2)推算出成都全年月平均气温低于但又不低于的是哪些月份.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据题意列出周期应满足的条件,解得,代入周期计算公式即可解得的范围.【详解】由题可知,解得,则,故选:A【点睛】本题考查正弦函数图像的性质与周期,属于中档题.2、A【解析】由不等式的解集为,可得的根为,由韦达定理可得的值,代入不等式解出其解集即可.【详解】的解集为,则的根为,即,,解得,则不等式可化为,即为,解得或,故选:A.3、C【解析】根据题中条件,得到圆的半径,进而可得圆的方程.【详解】以点为圆心且与轴相切的圆的半径为,故圆的标准方程是.故选:C.4、A【解析】求出1密位对应的弧度,进而求出转过的密位.【详解】有题意得:1密位=,因为圆心角小于200密位,扇形的弦长和弧长近似相等,所以,因为,所以迫击炮转动的角度为30密位.故选:A5、C【解析】根据圆心角可以得出弧长与半径的关系,根据面积公式可得出弧长【详解】由题意可得,所以【点睛】本题考查扇形的面积公式、弧长公式,属于基础题6、A【解析】全称命题的否定是特称命题,并将结论加以否定.【详解】因为命题,所以命题p的否定是,故选:A.7、A【解析】由面面垂直的判定定理:如果一个平面经过另一平面的一条垂线,则两面垂直,可得,可得考点:空间线面平行垂直的判定与性质8、B【解析】根据题中条件,得到,展开后根据基本不等式,即可得出结果.【详解】因为正实数满足,所以,当且仅当,即时,等号成立.故选:B.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.9、A【解析】由图观察出和后代入最高点,利用可得,进而得到解析式【详解】解:由图可知:,,,,代入点,得,,,,,,故选.【点睛】本题考查了由的部分图象确定其表达式,属基础题.10、C【解析】根据分段函数的定义域求解.【详解】因为,所以故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】按照指数函数的单调性及端点处函数值的大小关系得到不等式组,解不等式组即可.【详解】由题知故答案为:.12、2【解析】根据扇形的面积公式即可求解.【详解】解:因为扇形的半径为2,弧长为2,所以该扇形的面积为,故答案为:2.13、6【解析】先由已知求出半径,从而可求出弧长【详解】设扇形所在圆的半径为,因为扇形的面积为9,圆心角为2弧度,所以,得,所以该扇形的弧长为,故答案为:614、【解析】结合正弦函数的性质确定参数值.【详解】由图可知,最小正周期,所以,所以.故答案为:.【点睛】本题考查由三角函数图象确定其解析式,掌握正弦函数的图象与性质是解题关键.15、【解析】根据向量垂直向量数量积等于,解得α·β=,再利用向量模的求法,将式子平方即可求解.【详解】由得,所以,所以所以.故答案为:16、【解析】算出弦心距后可计算弦长【详解】圆的标准方程为:,圆心到直线的距离为,所以,填【点睛】圆中弦长问题,应利用垂径定理构建直角三角形,其中弦心距可利用点到直线的距离公式来计算三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)小王比原来每年少交12960元个人所得税(2)①;②他的税前全年应纳税所得额为153850元【解析】(1)分别按旧税率和新税率计算所纳税款,比较即可求解;(2)根据速算法则求出X即可,由速算法则计算税后200000元时税前收入即可.【小问1详解】由于小王的全年税前收入为180000元,按照旧税率,小王的个人所得税为:元按照新税率,小王的个人所得税为:元且元,小王比原来每年少交12960元个人所得税.【小问2详解】①按照表1,假设个人全年应纳税所得额为x元,可得:,.②按照表2中,级数3,;按照级数2,;显然,所以应该参照“级数3”计算.假设他的全年应纳税所得额为t元,所以此时,解得,即他的税前全年应纳税所得额为153850元.18、(1);(2);(3).【解析】(1)利用二倍角的正切公式求解即可;(2)将分子分母同除得到,代值求解即可;(3)先求得,再用两角差的正弦公式求解即可.【详解】(1)(2)(3)19、(1);(2);(3)【解析】(1)利用基本函数的单调性即得;(2)由题可得恒成立,再利用基本不等式即求;(3)由题意可知对任意一个实数,方程有四个根,利用二次函数的图像及性质可得,即求.【小问1详解】∵函数,,所以函数在上单调递增,∴函数的值域为;【小问2详解】∵对任意的,都有恒成立,∴,即,即有,故有,∵,,∴,当且仅当,即取等号,∴,即,∴实数a的取值范围为;【小问3详解】∵函数的值域为,由题意可知对任意一个实数,方程有四个根,又,则必有,令,,故有,故有,可解得,∴实数a的取值范围为.20、(1)(2)使每间熊猫居室的宽为,每间居室的长为15m时所建造的每间熊猫居室面积最大;每间熊猫居室的最大面积为150【解析】(1)根据周长求出居室的长,再根据矩形面积公式得函数关系式,最后根据实际意义确定定义域(2)根据对称轴与定义区间位置关系确定最值取法:在对称轴处取最大值试题解析:解:(1)设熊猫居室的宽为(单位),由于可供建造围墙的材料总长是,则每间熊猫居室的长为(单位m)所以每间熊猫居室的面积又得(2)二次函数图象开口向下,对称轴且,当时,,所以使每间熊猫居室的宽为,每间居室的长为15m时所建造的每间熊猫居室面积最大;每间熊猫居室的最大面积为150点睛:在建立二次函数模型解决实际问题中的最优问题时,一定要注意自变量的取值范围,需根据函数图象的对称轴与函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论