版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
IncollaborationwithCapgemini
AIAgentsinAction:
FoundationsforEvaluationandGovernance
WHITEPAPER
NOVEMBER2025
Images:AdobeStock
Contents
Foreword4
Executivesummary
5
Introduction
6
1EvolvingtechnicalfoundationsofAIagents8
1.1ThesoftwarearchitectureofanAIagent
8
1.2Communicationprotocolsandinteroperability
10
1.3Cybersecurityconsiderations
12
2FoundationsforAIagentevaluationandgovernance13
2
.1Classification
14
2
.2Evaluation
19
2
.3Riskassessment
22
2
.4GovernanceconsiderationsforAIagents:aprogressiveapproach
25
3Lookingahead:multi-agentecosystems
29
Conclusion30
Contributors31
Endnotes34
Disclaimer
Thisdocumentispublishedbythe
WorldEconomicForumasacontributiontoaproject,insightareaorinteraction.
Thefindings,interpretationsand
conclusionsexpressedhereinarearesultofacollaborativeprocessfacilitatedand
endorsedbytheWorldEconomicForumbutwhoseresultsdonotnecessarily
representtheviewsoftheWorldEconomicForum,northeentiretyofitsMembers,
Partnersorotherstakeholders.
©2025WorldEconomicForum.Allrightsreserved.Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,includingphotocopyingandrecording,orbyanyinformation
storageandretrievalsystem.
AIAgentsinAction:FoundationsforEvaluationandGovernance2
AIAgentsinAction:FoundationsforEvaluationandGovernance3
November2025
AIAgentsinAction:FoundationsforEvaluationandGovernance
Foreword
RoshanGya
ChiefExecutiveOfficer,CapgeminiInvent
Inrecentyears,organizationshavemovedbeyondpredictivemodelsandchatinterfacestoexperimentwithartificialintelligence(AI)inmoretransformativeways.AIagentsarenowemergingasintegrated
collaboratorsinbusiness,publicservicesand
everydaylife.TheadoptionofAIagentscould
bringsignificantgainsinefficiency,alteredkindsofhuman-machineinteractionandtheadventofnoveldigitalecosystems.
Thistransitionfacesmultipleobstaclesthatneedtobeaddressed.Movingfrommodelstoagentsrepresentsmorethanatechnicalmilestoneandrequires
organizationstorethinkhowtheydesign,evaluateandgovernadvancedagenticsystems.Manycompaniesarenowquestioningwhatagentscanaccomplish
alongsidethepracticalstepsneededtoadoptanddeploythemsafely,responsiblyandeffectively.
Thispaperwasdevelopedtohelpanswerthose
questions.Bymappingtheevolvingfoundations
ofagenticsystems,classifyingtheirroles,
identifyingnewwaystoevaluatethemandoutliningprogressivegovernanceapproaches,thepaper
offerspracticalguidanceforleadersnavigatingadoptioninreal-worldcontexts.
CathyLi
Head,CentreforAI
Excellence,Memberof
theExecutiveCommittee,WorldEconomicForum
ThroughtheAIGovernanceAlliance,theWorld
EconomicForumandCapgeminiareadvancing
thissubjectincollaborationwiththeAIcommunity,signallingthatnowisthetimetoprepareforan
agenticfuture.Ifadoptersstartsmall,iterate
carefullyandapplyproportionatesafeguards,
agentscanbedeployedinwaysthatamplify
humancapabilities,unlockproductivityand
establishafoundationformorecomplexmulti-agentecosystemstoemergeovertime.Unlessacarefulanddeliberateapproachtoadoptionisadopted,
untestedusecasescouldoutpaceoversightandleadtomisalignedincentives,emergentrisksandlossofpublictrust.
Aswithanytransformativetechnology,the
opportunitiespresentedbyAIagentsmustbe
accompaniedbyaresponsibilitytoguidetheir
developmentanddeploymentwithcare.Through
cross-functionaleffortsandcollaborative
governance,AIagentscanbeintegratedinways
thatamplifyhumaningenuity,promoteinnovation
andimproveoverallqualityoflife.Thispaperisa
stepinthatdirection,offeringguidancetohelpearlyadoptersnavigatethecomplexandoftenuneven
pathofAIagentadoption.
AIAgentsinAction:FoundationsforEvaluationandGovernance4
Executivesummary
ThispaperexplorestheemergenceofAI
agents,outliningtheirtechnicalfoundations,classification,evaluationandgovernancetosupportsafeandeffectiveadoption.
ThisreporthasbeentailoredmainlyforadoptersofAIagents,includingdecision-makers,technicalleadersandpractitionersseekingtointegrateAI
agentsintoorganizationalworkflowsandservices.
WhileAIagentsaregainingtraction,thereremainslimitedguidanceonhowtodesign,testand
overseethemresponsibly.Thispaperaimstohelpfillthatgapbyprovidingastructuredfoundationforthesafeandeffectivedeploymentofthesesystems.
Thepapermakesthreekeycontributions.Firstly,itcoversthetechnicalfoundationsofAIagents,
includingtheirarchitectures,protocolsandsecurityconsiderations.Secondly,itoffersafunctional
classificationthatdifferentiatesagentsbytheirrole,autonomy,authority,predictabilityandoperational
context.Thirdly,itsuggestsaprogressivegovernanceapproachthatdirectlyconnectsevaluationand
safeguardstoanagent’staskscopeanddeploymentenvironment.
Together,theseelementsguideadopterswitha
conceptualblueprintformovingfromexperimentationtodeployment.ThereporthighlightstheimportanceofaligningadoptionwithevaluationandgovernancepracticestoensurethatAIagentsaresuccessfullydeployedwhiletrust,safetyandaccountability
aremaintained.
AIAgentsinAction:FoundationsforEvaluationandGovernance5
Introduction
AIagentsareshiftingfromprototypesto
deployment,bringingbothtransformative
opportunitiesandnovelgovernancechallenges.
AIagentsaregraduallybecomingembeddedinanincreasingnumberoftasks,workflowsand
usecasesthatspancloudandedgecomputing,leadingthewaytomorewidespreadadoption.
Asthetransitionfromprototypingtodeployment
accelerates,currentadoptionremainsconcentratedamongearlyadopters.Accordingtoarecentglobalsurveyofexecutives,82%oforganizationsplantointegrateagentswithinthenextonetothreeyears,indicatingthatmosteffortsarestillintheplanningorpilotphase,1whilemovingtowardswideradoption.
Theconceptofsoftwareagentshasbeenstudiedfordecadesinfieldssuchasrobotics,autonomoussystemsanddistributedcomputing.Whatisdifferent
todayistheriseofdata-drivenmodels,particularlygenerativeartificialintelligence(AI)andlargelanguagemodels(LLMs),whichareenablingtheemergenceofanewgenerationofLLM-basedagents.Thesesystemscangenerateplans,simulatereasoningandadapttheirbehaviourthroughfeedback
mechanismsinwaysthatwerepreviouslynot
possible.Thisevolutionhassparkedanew
waveofexperimentation,withresearchersandcompaniesrapidlycreatingprototypesofagentsinvariousfields.Thisreportfocusesmainlyon
LLM-basedagents(“AIagents”issometimes
usedinshort),whosegrowingcapabilitiescreatebothsignificantopportunitiesforadoptionandanewsetofchallengesingovernanceandsafety.
1
FIGURE
FoundationsfortheresponsibleadoptionofAIagents
1
Technicalfoundations
Laythe
groundwork
2
Functionalclassification
3
Evaluationandgovernance
Definetheagent’srole
Scalewithconfidence
AIAgentsinAction:FoundationsforEvaluationandGovernance6
LLM-basedAIagents,forexample,introducenewriskssuchasgoalmisalignment,behaviouraldrift,
toolmisuseandemergentcoordinationfailures
thattraditionalsoftwaregovernancemodelsare
unabletomanage.Unlikeconventionalsoftware,
agentsareincreasinglyassumingrolesthat
resemblethoseofhumandecision-makersrather
thanstatictools.Thismeansthatgovernance
modelsdesignedsolelyforaccesscontroland
systemreliabilityarenolongersufficient.Amore
usefulcomparisonisthegovernanceapplied
tohumanusers,whomustearnpermissions,
accountabilityandtrustbydemonstratingperformanceovertime.Similarly,trustinAIagentscanbe
establishedbytestingtheirbehaviouragainst
validatedcases,runningtheminhuman-in-the-loopconfigurationsandgraduallyexpanding
autonomyonlyoncereliabilityhasbeensufficientlydemonstrated.Inbothcases,theprincipleofleastprivilegeremainsessential,withaccesslimitedtoinformationandactionsnecessaryforthetask.
Thisreportaimstoprovideaforward-lookinganalysisoftheevolvinglandscapeofAIagents,focusing
onthecapabilities,infrastructure,classificationandsafeguardsnecessaryforresponsibledeployment.
Tothisend,itisstructuredaroundfourfoundational
pillarsacrossclassification,evaluation,riskassessmentandgovernance,whichtogetherformthefoundationforaprogressiveapproachtoadoptionand
deployment.Figure1presentsthegeneralcontentofthisreport,whichhelpsguidetheresponsibleadoptionanddeploymentofAIagents.
Thegoalistoequipadopters,providers,technicalleaders,organizationaldecision-makersandotherstakeholderswithasharedunderstandingofthecurrentstateofagenticsystemsandemerging
oversightpractices.Buildingonestablished
AIgovernanceprinciplesandframeworks,
suchasthosedevelopedbytheOrganisation
forEconomicCo-operationandDevelopment
(OECD),2NationalInstituteofStandardsand
Technology(NIST),3InternationalOrganizationforStandardization(ISO)/InternationalElectrotechnicalCommission(IEC)4andothers,thispaper
introducesadditionalprinciplesaddressing
autonomy,authority,operationalcontextand
systemicriskthatextendexistinggovernance
guidancefromanagent-focusedlens.The
insightshavebeeninformedbyworkinggroup
meetings,workshopsandextensiveinterviewswithmembersoftheSafeSystemsandTechnologies
workinggroupoftheAIGovernanceAlliance.
AIAgentsinAction:FoundationsforEvaluationandGovernance7
Evolvingtechnical
foundationsofAIagents
Thearchitecture,protocolsandsecurity
modelsofAIagentsdictatehowtheyintegrateintoorganizationsandinteractwiththeworld.
WhilethecorearchitectureofAIagentsisbeginningtotakeshape,practicesforagentdeployment,
integrationandgovernanceremainnascent.As
organizationsbeginto“hire”AIagentstosupportoraugmenthumanteams,orperformtasksthatimpactthephysicalworld,adoptionshouldbetreated
withthesamelevelofrigourasonboardinganew
employee,includingclearlydefinedroles,safeguardsandstructuredoversightmechanisms.Thissectionoutlinesthetechnicalfoundationsthatenableagenticsystemsandthearchitecturedecisionsthatshape
howtheyarebuilt,deployedandgoverned.
1
ThesoftwarearchitectureofanAIagent
Buildingagentsrequiresnotjustengineeringbut
alsoorchestrationandcoordinationbetweenmodels,tools,datasourcesandhumans.
1.1
TheadoptionofLLM-basedagentsbyindustry
marksabroadershiftinsoftwaredevelopmentfromrigid,rules-basedsystemstomoreflexible,intent-driveninteractions.Forinstance,incallcentres,
earlychatbotsthatfollowedscripteddecisiontreesarenowgivingwaytoagenticsystemscapable
ofunderstandingintent,managingcontext,and
escalatingdecisionsmoredynamically.ThisevolutiontowardsagenticAIrepresentsafundamentalchangeincontrolandautonomy,wheretaskstraditionallyperformedbyhumansaredelegatedtomachines.
Toenablethisshift,AIagentsdrawonfourtechnologicalparadigms:
–Classicalsoftware:deterministiclogicandrule-basedexecution
–Neuralnetworks:patternrecognitionandstatisticallearning
–Foundationmodels:general-purpose,adaptivesystemsthatinterpretinstructionsandact
contextually
–Autonomouscontrol:mechanismsthatenablesystemstoplan,coordinateandactwithminimalhumanoversight
Asaresult,buildingagentsrequiresnotjust
engineeringbutalsoorchestrationandcoordination
betweenmodels,tools,datasourcesandhumans.Thislayeredsetupintroducesnewcomplexity
inhowagentsbehave,generalizeandinteractwiththeirenvironment,reinforcingtheneedforstructuredscaffolding.
Today,AIagentarchitecturesareorganizedinto
threeinterconnectedlayers,consisting
ofapplication,orchestrationandreasoning,
whichcollectivelyenableintelligent,context-
awareandbusiness-alignedautomation.Atahighlevel,agentarchitecturesaredesignedtointerfacewithusersandsystems,coordinatecomplextasksusingexternaltoolsandapplicationprogramminginterfaces(APIs),andsupportdecision-making
throughacombinationoflanguagemodels,
reasoningmodulesandcontrollogic.Together,theselayersprovidethetechnicalfoundationthatunderpinshowagentsoperate.
Theapplicationlayer,alongwithprotocolssuchasModelContextProtocol(MCP)andagent-to-
agentprotocol(A2A),integratestheagentinto
specificprocessesoruserworkflows.ItreceivesinputthroughuserinterfacesorAPIsandtranslatesitintostructuredsignals.Applicationlogicappliesdomain-specificrulesandconstraintstoensuretheagent’soutput(i.e.forecast,decisions,actions,messages,etc.)isalignedwithuserexpectationsandbusinessrequirements.Thislayercanruninthecloudoron-preminedgecomputingequipment.
Understandingthisarchitectureiskeytoanticipatinghowagentswill
engagewithusersandsystems,
coordinate
workflowsandmakecontext-awaredecisions.
FIGURE2
Theorchestrationlayer(frameworklayer)
governshowtheagentinterpretsinputs,invokestoolsandcoordinatestasks.WhilesomeLLM
providers5haveintegratedtoolsdirectlyintotheirsolutions,thiscancreaterigidandvendor-lockedsystems.Agenticframeworksovercomethis
bystandardizingtoolsandsystemsintegration,remainingLLM-agnosticandspanningmultipleworkloadsacrosscloudandedge.ThisenablesAIagentstoemployarangeofreasoningstrategiesandsupportfeatures,suchascodeexecutionorsearch,anduseprotocolslikeMCPtoconnectwithenterpriseresources,includingdatabasesandcustomerrelationshipmanagement(CRM)systems.Mostagentsalsoincludespecializedsub-agentsthathandledistincttasks,whichmakesthemfunctionallypartofamulti-agentsystem.
Theorchestrationlayeriscriticalinthisregard,asitcoordinatessub-agents,assignsresponsibilitiesandmanagesdependenciesbetweenthem.Italsoenablesmodelswitching,allowingorganizationstoassigndifferentmodelstovarioustasksbasedontheircomplexity,costorperformance.Importantly,AIagentshaveauniquearchitecturethatcan
beextendedbeyondtheorganization’ssecurity
perimeter.Theirabilitytoinvokeexternaltoolsandcommunicatewithotheragentsenablesthemto
SoftwarearchitectureofanAIagent
operatebeyondtraditionalnetworkboundaries,introducingnovelcybersecurityconcerns.
Thereasoninglayerunderpinstheagent’sabilitytogenerate,predict,classifyorapplyrulesin
pursuitofitsgoals.Dependingonthetask,the
reasoninglayercandrawonarangeofmodels,
includingdeterministic,rule-basedapproaches
andclassicalmachinelearning,aswellassmall
orlargelanguagemodelsandothergenerative
architectures.Thechoiceofmodelshapeshow
theagentprocessesinformation,adaptstocontextandultimatelycarriesoutitsassignedrole.
Figure2illustratesthislayeredarchitecture,showinghowinternalcomponentsacrossapplication,
orchestrationandreasoningworktogetherto
supportdynamicagentbehaviourwhilemaintainingsecureboundariesacrossorganizationalsystems.
Incombination,theselayersconstitutethe
technicalbackbonethatgovernsagent
functionality.FororganizationsimplementingAIagents,understandingthisarchitectureiskeytoanticipatinghowagentswillengage
withusersandsystems,coordinateworkflowsandmakecontext-awaredecisions.
EventUser
Application
Orchestration
Reasoning
Environment
Alagentboundary
ITapplications
Percepts
Actions
CRM
Messaging
Database
Input/output
UI
API
Code
Agenticframework
PlanningMemoryToolsWorkflow
GenerativeNon-generativeMechanistic
Reasoning
Application
Orchestration
Models
Alagent
MCP
Alagent
A2A
AIAgentsinAction:FoundationsforEvaluationandGovernance8
InternalorganizationresourcesThird-partyresources
Communicationprotocolsandinteroperability
1.2
MCPhasgainedwidespreadsupportacrossleading
agentframeworksandisincreasinglyviewedasacoremechanism.
ThelandscapeofadvancedLLM-basedagents
issupportedbynewprotocolsthatenablemore
seamlessintegrationandcollaboration.TheMCP,
forexample,aimstostandardizetheconnection
betweenenterprisesoftwaresystems,external
datasourcesandagents,whileprotocolssuch
asA2Aandthe
AGNTCY
architecture’sagent
connectprotocol(ACP)offertoolstofacilitate
interactionbetweenvaryingAIagents,formingthe
interoperabilitylayerformulti-agentsystems(MAS).Astheseprotocolsareimplementedacrosscloud
platforms,enterprisenetworksandedgedevices,
theyarenecessaryforrunningagenticcodewhile
connectingwithreal-worldsensordataandsystems.
IntroducedbyAnthropicinlate2024,MCP6enablesagentstoconnectwithinternalor
externaldatasources,APIsandenterprisesystemsthroughastandardizedprotocol.
Ratherthandevelopingbespokeintegrations
foreachagent-taskpairing,MCPallowsagentstoactasclientsthatrequestaccesstoservicesviaMCP-compliantservers.Forexample,an
agentusingMCPcancheckacalendar,retrieveemails,updatedatabasecontentorupdate
CRMrecordsthroughasharedinterface.
Thissignificantlyreducesfriction,speedsup
deploymentandsupportsmodularplug-and-playcapabilitiesacrosstoolsandenvironments.
MCPhasgainedwidespreadsupportacrossleadingagentframeworksandisincreasinglyviewedasacoremechanismforconnecting
agentstothebroaderenterpriseinfrastructure.
IllustrationofMCP-basedagentcommunication
FIGURE3
MCP
client
messaging
MCP
client
database
MCP
client
database
AIagent1
AIagent2
1
Userupdatesarecord
Sendanemail
Readarecord
MCP
server
messaging
MCP
server
database
4
Acknowledgeupdate
3
2
MCPserverupdatesthedatabase
Messaging
Databaseupdateconfirmed
Database
AIAgentsinAction:FoundationsforEvaluationandGovernance9
OverviewofMCP
AIAgentsinAction:FoundationsforEvaluationandGovernance10
WhereMCPfocusesoncommunicationbetweenagentsandexternalorinternalsystems,protocolslikeA2Aenableagentstodiscovereachother,
interact,collaborateanddelegatetasks,whetheroperatingwithinanorganization’ssecurityperimeteroroutsideit.Theseprotocolsaddressagrowingneedincomplexenvironmentswheremultiple
agentsworktogetheracrossorganizationalortechnicalboundaries,enablingagentsfromdifferentvendorstocommunicateeffectively.
ReleasedbyGoogleinApril2025,7A2Aoperatesthroughacommoncommunicationinterfaceandintroducestheconceptofagentcards(similartomodelcards8),whicharestructureddescriptionsofanagent’sidentity,alongwithitscapabilities
andskills.Thisallowsforautomaticdiscoveryandcoordinationbetweenagentsandsystems.
4
FIGURE
Illustrationofagent-to-agentcommunicationprotocol
A2Aprotocol
Agentscard
Task
manager
MCP
A2A
Artefacthandler
APIsandenterpriseapplications
APIsandenterpriseapplications
AIagent2
Agents
LLM
Agentframework
AIagent1
Agentframework
Agents
LLM
Beyondcommunicationanddiscovery,new
standardsarealsoemergingthataddresshowagentstransactandexchangevalue.ReleasedbyGoogleinSeptember2025,theAgent
PaymentsProtocol(AP2)9enablessecure,auditabletransactionsunderuser-definedlimits.UnlikeMCPandA2A,whichfocusondataexchangeandtaskcoordination,AP2addressescomplexfinancialoperations.
Despitethisprogress,interoperabilityremainsakeychallenge.Technicalcompatibilityalonedoesnotguaranteesuccessfulcoordination
betweenagents.Strategy,privacyandsecurityconsiderationsoftenshapehowandwhether
systemsshouldbeintegratedandareimportantforenterprisestocarefullyconsider.
Forexample,communicationbetweendifferentagentscouldraiseconcernsaboutaccesscontrol,dataconfidentialityorcomplianceacrossjurisdictions.Choosingwhethertoexposeacapabilitytootheragentsbecomesagovernancedecisionasmuchasatechnicalchoice.
AIAgentsinAction:FoundationsforEvaluationandGovernance11
Cybersecurityconsiderations
Security
strategieshave
evolvedfrom
perimeterdefencestolayered“defenceindepth”andmorerecentlytothe
zero-trustmodel.
1.3
AsAIagentsmoveintoenterpriseandconsumer-facingenvironments,theyextendratherthan
replaceexistingsecuritychallenges.Security
strategieshaveevolvedfromperimeterdefencestolayered“defenceindepth,”andmorerecentlytothezero-trustmodel.10Thesechangesreflectbroadertransformationssuchascloudadoption,distributedworkforcesandinterconnected
ecosystems,allofwhichhavealreadyweakenedthenotionofaclearboundarybetweeninternalandexternalnetworks.Agentsbuildonthis
trajectorybutaddadditionallayersofriskthatmustbemanagedproactively.
Byautonomouslyinvokingtoolsandcommunicatingacrossorganizationallines(e.g.viaMCPand
A2A),agentsembedexternalservices,databasesandpeeragentsintoenterpriseworkflows.Thismultiplicationofidentitiesandconnectionsmakesidentitymanagement,micro-segmentationandongoingverificationofagentactivityessential.
WhileprotocolssuchasMCPandA2Acan
streamlineintegration,theyalsoexpandtheattacksurface11byintroducingnewexternaldependenciesandinterfaces,asillustratedinFigure2.Thevery
interoperabilitythatenhancesagentcapabilities
alsoexposesenterprisestounpredictableinputsandvulnerabilitiesfromthirdparties.Foradopters,thismeansthateveryagentinteractionshouldbetreatedasuntrustedbydefault,andthatverifyingidentity,permissionsandcontextisnecessary
beforegrantingaccess.
Finally,agentscanbemisused.12Theymightbe
exploitedthroughdesignflawsorpromptinjections,orevenintentionallydeployedformaliciouspurposes,suchasaccessingprivatedataorspreading
misinformation.Unliketraditionalattacks,autonomousagentscanactwithspeedandpersistence,makingattributionandaccountabilityharder.Organizationsshouldprepareforthisbyimplementingstrong
audittrails,incidentresponseplansandclearaccountabilitystructures.
AIAgentsinAction:FoundationsforEvaluationandGovernance12
2
Systematic
classificationis
importantbecauseitprovidesa
commonbasisforcomparingagents,anticipatingrisksandlinking
evaluationandgovernance.
FoundationsforAIagentevaluationandgovernance
AstructuredfoundationforevaluatingandgoverningAIagentsenablesconsistent
assessmentandoversightacrosscontexts.
AsAIagentsmatureandadoptionincreases,a
functionalunderstandingoftheirrolesandpropertiesisbeginningtotakeshape.Ratherthanclassifying
agentssolelybymodality(e.g.text,speech,vision)
ordomain(e.g.customerservice,decisionsupport,workfloworchestration),itismoreeffectiveto
evaluatethemaccordingtotheirintendedpurpose,corepropertiesandoperatingcontext.Thisapproachcreatesaclearerfoundationforassessingimpacts
anddesigningsafeguardsthatareproportionatetoanagent’srole.Systematicclassificationisimportantbecauseitprovidesacommonbasisforcomparingagents,anticipatingrisksandlinkingevaluation
andgovernancedecisionstotherealitiesofhow
anagentoperates.Withoutit,oversightrisksmaybecomeinconsistent,reactiveordisconnectedfromanagent’sactualcapabilitiesandenvironment.
Toestablishthisfoundation,thisreport
introducesfourfoundationalpillarswhich,incombination,provideastructured
approachtoassessmentandadoption:
–Classification:Establishtheagent’scharacteristicsandoperationalcontexttoinformdownstreamassessment.
–Evaluation:Generateevidenceofperformanceandlimitationsinrepresentativesettings.
–Riskassessment:Analysepotentialharmusingclassificationandevaluationasinputs.
–Governance:Translateclassification,evaluationandriskassessmentresultsintosafeguardsandaccountability
proportionatetotheagent’sprofile.
ThesefoundationsapplytodiverseAIagents,encompassingbothvirtualandembodied
systemsindifferentoperationalcontexts.
Theyprovideaconsistentbasisforassessing
performance,identifyingrisksandestablishinggovernancemechanismsthatscalewithan
agent’sautonomy,authorityandfunction.
Toaddressclassification,evaluation,riskassessmentandgovernance,itisusefultodistinguishbetweentwomainstakeholderperspectives:13
–Provider:ReferstoorganizationsorindividualsthatsupplyAIsystems,platformsortools.Theirresponsibilitiesincludeensuringthatproductsaredevelopedandmaintainedinaccordance
withresponsibleandethicalguidelines,and
thatthenecessarydocumentationandsupportareprovided.
–Adopter:Referstoindividualswithinan
organizationwhouseAIsystems,encompassingresponsibilitiessuchasprocurementand
deployment.Procurementinvolvesthe
responsibilityofacquiringAIsolutionsfor
organizationalusebyconductingduediligenceandensuringthatallAIagentsolutionscomply
withorganizationalpoliciesandregulatory
requirements.DeploymentistheresponsibilityforimplementingAIsystemsinaccordancewithdocumentedrequirementsandplans,while
ensuringthatrisksandimpactsoftheAIagentareproperlyassessedandmanaged.
Theadopterdependsontheproviderfor
transparentdocumentation,modelandsystem
specifications,andsufficientperformanceandriskinformationtosupportresponsibledeploymentandoversightthroughoutthesystemlifecycle.
Thefourpillarsformacontinuousandparallel
progressioninwhichclassificationprovides
structure,evaluationestablishesevidence
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基于《洛神赋图》图像叙事的空间转译研究
- 陕西兵马俑遗产概述
- 2025年政府专职消防文员招录考试笔试参考题库选择题50题及答案
- 2025年医院三基知识考试试题库及答案(共120题)
- 功能食品选择题库及答案
- 2025年六语下册单元试卷及答案
- 《植入式静脉给药装置护理技术》专业解读2026
- 2025年健康课素养测试题及答案
- 庙会出租合同范本
- 河南医学招聘考试题目及答案
- 2024年移动互联网行业白皮书-七麦数据
- 拜占庭历史与文化知到智慧树章节测试课后答案2024年秋南开大学
- etc解除车牌占用委托书
- 2024年秋江苏开放大学数据挖掘技术060734形考作业1-3
- JT-T-1201-2018带式收油机行业标准
- DZ∕T 0207-2020 矿产地质勘查规范 硅质原料类(正式版)
- 成人住院患者跌倒风险评估及预防
- (正式版)HGT 4339-2024 机械设备用涂料
- 口袋公园设计方案
- 2024年重庆水务集团招聘笔试参考题库含答案解析
- 生产委托加工合同中英文版
评论
0/150
提交评论