2025 AI智能体的实践应用:评估与治理基础框架白皮书(英文)_第1页
2025 AI智能体的实践应用:评估与治理基础框架白皮书(英文)_第2页
2025 AI智能体的实践应用:评估与治理基础框架白皮书(英文)_第3页
2025 AI智能体的实践应用:评估与治理基础框架白皮书(英文)_第4页
2025 AI智能体的实践应用:评估与治理基础框架白皮书(英文)_第5页
已阅读5页,还剩58页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

IncollaborationwithCapgemini

AIAgentsinAction:

FoundationsforEvaluationandGovernance

WHITEPAPER

NOVEMBER2025

Images:AdobeStock

Contents

Foreword4

Executivesummary

5

Introduction

6

1EvolvingtechnicalfoundationsofAIagents8

1.1ThesoftwarearchitectureofanAIagent

8

1.2Communicationprotocolsandinteroperability

10

1.3Cybersecurityconsiderations

12

2FoundationsforAIagentevaluationandgovernance13

2

.1Classification

14

2

.2Evaluation

19

2

.3Riskassessment

22

2

.4GovernanceconsiderationsforAIagents:aprogressiveapproach

25

3Lookingahead:multi-agentecosystems

29

Conclusion30

Contributors31

Endnotes34

Disclaimer

Thisdocumentispublishedbythe

WorldEconomicForumasacontributiontoaproject,insightareaorinteraction.

Thefindings,interpretationsand

conclusionsexpressedhereinarearesultofacollaborativeprocessfacilitatedand

endorsedbytheWorldEconomicForumbutwhoseresultsdonotnecessarily

representtheviewsoftheWorldEconomicForum,northeentiretyofitsMembers,

Partnersorotherstakeholders.

©2025WorldEconomicForum.Allrightsreserved.Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,includingphotocopyingandrecording,orbyanyinformation

storageandretrievalsystem.

AIAgentsinAction:FoundationsforEvaluationandGovernance2

AIAgentsinAction:FoundationsforEvaluationandGovernance3

November2025

AIAgentsinAction:FoundationsforEvaluationandGovernance

Foreword

RoshanGya

ChiefExecutiveOfficer,CapgeminiInvent

Inrecentyears,organizationshavemovedbeyondpredictivemodelsandchatinterfacestoexperimentwithartificialintelligence(AI)inmoretransformativeways.AIagentsarenowemergingasintegrated

collaboratorsinbusiness,publicservicesand

everydaylife.TheadoptionofAIagentscould

bringsignificantgainsinefficiency,alteredkindsofhuman-machineinteractionandtheadventofnoveldigitalecosystems.

Thistransitionfacesmultipleobstaclesthatneedtobeaddressed.Movingfrommodelstoagentsrepresentsmorethanatechnicalmilestoneandrequires

organizationstorethinkhowtheydesign,evaluateandgovernadvancedagenticsystems.Manycompaniesarenowquestioningwhatagentscanaccomplish

alongsidethepracticalstepsneededtoadoptanddeploythemsafely,responsiblyandeffectively.

Thispaperwasdevelopedtohelpanswerthose

questions.Bymappingtheevolvingfoundations

ofagenticsystems,classifyingtheirroles,

identifyingnewwaystoevaluatethemandoutliningprogressivegovernanceapproaches,thepaper

offerspracticalguidanceforleadersnavigatingadoptioninreal-worldcontexts.

CathyLi

Head,CentreforAI

Excellence,Memberof

theExecutiveCommittee,WorldEconomicForum

ThroughtheAIGovernanceAlliance,theWorld

EconomicForumandCapgeminiareadvancing

thissubjectincollaborationwiththeAIcommunity,signallingthatnowisthetimetoprepareforan

agenticfuture.Ifadoptersstartsmall,iterate

carefullyandapplyproportionatesafeguards,

agentscanbedeployedinwaysthatamplify

humancapabilities,unlockproductivityand

establishafoundationformorecomplexmulti-agentecosystemstoemergeovertime.Unlessacarefulanddeliberateapproachtoadoptionisadopted,

untestedusecasescouldoutpaceoversightandleadtomisalignedincentives,emergentrisksandlossofpublictrust.

Aswithanytransformativetechnology,the

opportunitiespresentedbyAIagentsmustbe

accompaniedbyaresponsibilitytoguidetheir

developmentanddeploymentwithcare.Through

cross-functionaleffortsandcollaborative

governance,AIagentscanbeintegratedinways

thatamplifyhumaningenuity,promoteinnovation

andimproveoverallqualityoflife.Thispaperisa

stepinthatdirection,offeringguidancetohelpearlyadoptersnavigatethecomplexandoftenuneven

pathofAIagentadoption.

AIAgentsinAction:FoundationsforEvaluationandGovernance4

Executivesummary

ThispaperexplorestheemergenceofAI

agents,outliningtheirtechnicalfoundations,classification,evaluationandgovernancetosupportsafeandeffectiveadoption.

ThisreporthasbeentailoredmainlyforadoptersofAIagents,includingdecision-makers,technicalleadersandpractitionersseekingtointegrateAI

agentsintoorganizationalworkflowsandservices.

WhileAIagentsaregainingtraction,thereremainslimitedguidanceonhowtodesign,testand

overseethemresponsibly.Thispaperaimstohelpfillthatgapbyprovidingastructuredfoundationforthesafeandeffectivedeploymentofthesesystems.

Thepapermakesthreekeycontributions.Firstly,itcoversthetechnicalfoundationsofAIagents,

includingtheirarchitectures,protocolsandsecurityconsiderations.Secondly,itoffersafunctional

classificationthatdifferentiatesagentsbytheirrole,autonomy,authority,predictabilityandoperational

context.Thirdly,itsuggestsaprogressivegovernanceapproachthatdirectlyconnectsevaluationand

safeguardstoanagent’staskscopeanddeploymentenvironment.

Together,theseelementsguideadopterswitha

conceptualblueprintformovingfromexperimentationtodeployment.ThereporthighlightstheimportanceofaligningadoptionwithevaluationandgovernancepracticestoensurethatAIagentsaresuccessfullydeployedwhiletrust,safetyandaccountability

aremaintained.

AIAgentsinAction:FoundationsforEvaluationandGovernance5

Introduction

AIagentsareshiftingfromprototypesto

deployment,bringingbothtransformative

opportunitiesandnovelgovernancechallenges.

AIagentsaregraduallybecomingembeddedinanincreasingnumberoftasks,workflowsand

usecasesthatspancloudandedgecomputing,leadingthewaytomorewidespreadadoption.

Asthetransitionfromprototypingtodeployment

accelerates,currentadoptionremainsconcentratedamongearlyadopters.Accordingtoarecentglobalsurveyofexecutives,82%oforganizationsplantointegrateagentswithinthenextonetothreeyears,indicatingthatmosteffortsarestillintheplanningorpilotphase,1whilemovingtowardswideradoption.

Theconceptofsoftwareagentshasbeenstudiedfordecadesinfieldssuchasrobotics,autonomoussystemsanddistributedcomputing.Whatisdifferent

todayistheriseofdata-drivenmodels,particularlygenerativeartificialintelligence(AI)andlargelanguagemodels(LLMs),whichareenablingtheemergenceofanewgenerationofLLM-basedagents.Thesesystemscangenerateplans,simulatereasoningandadapttheirbehaviourthroughfeedback

mechanismsinwaysthatwerepreviouslynot

possible.Thisevolutionhassparkedanew

waveofexperimentation,withresearchersandcompaniesrapidlycreatingprototypesofagentsinvariousfields.Thisreportfocusesmainlyon

LLM-basedagents(“AIagents”issometimes

usedinshort),whosegrowingcapabilitiescreatebothsignificantopportunitiesforadoptionandanewsetofchallengesingovernanceandsafety.

1

FIGURE

FoundationsfortheresponsibleadoptionofAIagents

1

Technicalfoundations

Laythe

groundwork

2

Functionalclassification

3

Evaluationandgovernance

Definetheagent’srole

Scalewithconfidence

AIAgentsinAction:FoundationsforEvaluationandGovernance6

LLM-basedAIagents,forexample,introducenewriskssuchasgoalmisalignment,behaviouraldrift,

toolmisuseandemergentcoordinationfailures

thattraditionalsoftwaregovernancemodelsare

unabletomanage.Unlikeconventionalsoftware,

agentsareincreasinglyassumingrolesthat

resemblethoseofhumandecision-makersrather

thanstatictools.Thismeansthatgovernance

modelsdesignedsolelyforaccesscontroland

systemreliabilityarenolongersufficient.Amore

usefulcomparisonisthegovernanceapplied

tohumanusers,whomustearnpermissions,

accountabilityandtrustbydemonstratingperformanceovertime.Similarly,trustinAIagentscanbe

establishedbytestingtheirbehaviouragainst

validatedcases,runningtheminhuman-in-the-loopconfigurationsandgraduallyexpanding

autonomyonlyoncereliabilityhasbeensufficientlydemonstrated.Inbothcases,theprincipleofleastprivilegeremainsessential,withaccesslimitedtoinformationandactionsnecessaryforthetask.

Thisreportaimstoprovideaforward-lookinganalysisoftheevolvinglandscapeofAIagents,focusing

onthecapabilities,infrastructure,classificationandsafeguardsnecessaryforresponsibledeployment.

Tothisend,itisstructuredaroundfourfoundational

pillarsacrossclassification,evaluation,riskassessmentandgovernance,whichtogetherformthefoundationforaprogressiveapproachtoadoptionand

deployment.Figure1presentsthegeneralcontentofthisreport,whichhelpsguidetheresponsibleadoptionanddeploymentofAIagents.

Thegoalistoequipadopters,providers,technicalleaders,organizationaldecision-makersandotherstakeholderswithasharedunderstandingofthecurrentstateofagenticsystemsandemerging

oversightpractices.Buildingonestablished

AIgovernanceprinciplesandframeworks,

suchasthosedevelopedbytheOrganisation

forEconomicCo-operationandDevelopment

(OECD),2NationalInstituteofStandardsand

Technology(NIST),3InternationalOrganizationforStandardization(ISO)/InternationalElectrotechnicalCommission(IEC)4andothers,thispaper

introducesadditionalprinciplesaddressing

autonomy,authority,operationalcontextand

systemicriskthatextendexistinggovernance

guidancefromanagent-focusedlens.The

insightshavebeeninformedbyworkinggroup

meetings,workshopsandextensiveinterviewswithmembersoftheSafeSystemsandTechnologies

workinggroupoftheAIGovernanceAlliance.

AIAgentsinAction:FoundationsforEvaluationandGovernance7

Evolvingtechnical

foundationsofAIagents

Thearchitecture,protocolsandsecurity

modelsofAIagentsdictatehowtheyintegrateintoorganizationsandinteractwiththeworld.

WhilethecorearchitectureofAIagentsisbeginningtotakeshape,practicesforagentdeployment,

integrationandgovernanceremainnascent.As

organizationsbeginto“hire”AIagentstosupportoraugmenthumanteams,orperformtasksthatimpactthephysicalworld,adoptionshouldbetreated

withthesamelevelofrigourasonboardinganew

employee,includingclearlydefinedroles,safeguardsandstructuredoversightmechanisms.Thissectionoutlinesthetechnicalfoundationsthatenableagenticsystemsandthearchitecturedecisionsthatshape

howtheyarebuilt,deployedandgoverned.

1

ThesoftwarearchitectureofanAIagent

Buildingagentsrequiresnotjustengineeringbut

alsoorchestrationandcoordinationbetweenmodels,tools,datasourcesandhumans.

1.1

TheadoptionofLLM-basedagentsbyindustry

marksabroadershiftinsoftwaredevelopmentfromrigid,rules-basedsystemstomoreflexible,intent-driveninteractions.Forinstance,incallcentres,

earlychatbotsthatfollowedscripteddecisiontreesarenowgivingwaytoagenticsystemscapable

ofunderstandingintent,managingcontext,and

escalatingdecisionsmoredynamically.ThisevolutiontowardsagenticAIrepresentsafundamentalchangeincontrolandautonomy,wheretaskstraditionallyperformedbyhumansaredelegatedtomachines.

Toenablethisshift,AIagentsdrawonfourtechnologicalparadigms:

–Classicalsoftware:deterministiclogicandrule-basedexecution

–Neuralnetworks:patternrecognitionandstatisticallearning

–Foundationmodels:general-purpose,adaptivesystemsthatinterpretinstructionsandact

contextually

–Autonomouscontrol:mechanismsthatenablesystemstoplan,coordinateandactwithminimalhumanoversight

Asaresult,buildingagentsrequiresnotjust

engineeringbutalsoorchestrationandcoordination

betweenmodels,tools,datasourcesandhumans.Thislayeredsetupintroducesnewcomplexity

inhowagentsbehave,generalizeandinteractwiththeirenvironment,reinforcingtheneedforstructuredscaffolding.

Today,AIagentarchitecturesareorganizedinto

threeinterconnectedlayers,consisting

ofapplication,orchestrationandreasoning,

whichcollectivelyenableintelligent,context-

awareandbusiness-alignedautomation.Atahighlevel,agentarchitecturesaredesignedtointerfacewithusersandsystems,coordinatecomplextasksusingexternaltoolsandapplicationprogramminginterfaces(APIs),andsupportdecision-making

throughacombinationoflanguagemodels,

reasoningmodulesandcontrollogic.Together,theselayersprovidethetechnicalfoundationthatunderpinshowagentsoperate.

Theapplicationlayer,alongwithprotocolssuchasModelContextProtocol(MCP)andagent-to-

agentprotocol(A2A),integratestheagentinto

specificprocessesoruserworkflows.ItreceivesinputthroughuserinterfacesorAPIsandtranslatesitintostructuredsignals.Applicationlogicappliesdomain-specificrulesandconstraintstoensuretheagent’soutput(i.e.forecast,decisions,actions,messages,etc.)isalignedwithuserexpectationsandbusinessrequirements.Thislayercanruninthecloudoron-preminedgecomputingequipment.

Understandingthisarchitectureiskeytoanticipatinghowagentswill

engagewithusersandsystems,

coordinate

workflowsandmakecontext-awaredecisions.

FIGURE2

Theorchestrationlayer(frameworklayer)

governshowtheagentinterpretsinputs,invokestoolsandcoordinatestasks.WhilesomeLLM

providers5haveintegratedtoolsdirectlyintotheirsolutions,thiscancreaterigidandvendor-lockedsystems.Agenticframeworksovercomethis

bystandardizingtoolsandsystemsintegration,remainingLLM-agnosticandspanningmultipleworkloadsacrosscloudandedge.ThisenablesAIagentstoemployarangeofreasoningstrategiesandsupportfeatures,suchascodeexecutionorsearch,anduseprotocolslikeMCPtoconnectwithenterpriseresources,includingdatabasesandcustomerrelationshipmanagement(CRM)systems.Mostagentsalsoincludespecializedsub-agentsthathandledistincttasks,whichmakesthemfunctionallypartofamulti-agentsystem.

Theorchestrationlayeriscriticalinthisregard,asitcoordinatessub-agents,assignsresponsibilitiesandmanagesdependenciesbetweenthem.Italsoenablesmodelswitching,allowingorganizationstoassigndifferentmodelstovarioustasksbasedontheircomplexity,costorperformance.Importantly,AIagentshaveauniquearchitecturethatcan

beextendedbeyondtheorganization’ssecurity

perimeter.Theirabilitytoinvokeexternaltoolsandcommunicatewithotheragentsenablesthemto

SoftwarearchitectureofanAIagent

operatebeyondtraditionalnetworkboundaries,introducingnovelcybersecurityconcerns.

Thereasoninglayerunderpinstheagent’sabilitytogenerate,predict,classifyorapplyrulesin

pursuitofitsgoals.Dependingonthetask,the

reasoninglayercandrawonarangeofmodels,

includingdeterministic,rule-basedapproaches

andclassicalmachinelearning,aswellassmall

orlargelanguagemodelsandothergenerative

architectures.Thechoiceofmodelshapeshow

theagentprocessesinformation,adaptstocontextandultimatelycarriesoutitsassignedrole.

Figure2illustratesthislayeredarchitecture,showinghowinternalcomponentsacrossapplication,

orchestrationandreasoningworktogetherto

supportdynamicagentbehaviourwhilemaintainingsecureboundariesacrossorganizationalsystems.

Incombination,theselayersconstitutethe

technicalbackbonethatgovernsagent

functionality.FororganizationsimplementingAIagents,understandingthisarchitectureiskeytoanticipatinghowagentswillengage

withusersandsystems,coordinateworkflowsandmakecontext-awaredecisions.

EventUser

Application

Orchestration

Reasoning

Environment

Alagentboundary

ITapplications

Percepts

Actions

CRM

Messaging

Database

Input/output

UI

API

Code

Agenticframework

PlanningMemoryToolsWorkflow

GenerativeNon-generativeMechanistic

Reasoning

Application

Orchestration

Models

Alagent

MCP

Alagent

A2A

AIAgentsinAction:FoundationsforEvaluationandGovernance8

InternalorganizationresourcesThird-partyresources

Communicationprotocolsandinteroperability

1.2

MCPhasgainedwidespreadsupportacrossleading

agentframeworksandisincreasinglyviewedasacoremechanism.

ThelandscapeofadvancedLLM-basedagents

issupportedbynewprotocolsthatenablemore

seamlessintegrationandcollaboration.TheMCP,

forexample,aimstostandardizetheconnection

betweenenterprisesoftwaresystems,external

datasourcesandagents,whileprotocolssuch

asA2Aandthe

AGNTCY

architecture’sagent

connectprotocol(ACP)offertoolstofacilitate

interactionbetweenvaryingAIagents,formingthe

interoperabilitylayerformulti-agentsystems(MAS).Astheseprotocolsareimplementedacrosscloud

platforms,enterprisenetworksandedgedevices,

theyarenecessaryforrunningagenticcodewhile

connectingwithreal-worldsensordataandsystems.

IntroducedbyAnthropicinlate2024,MCP6enablesagentstoconnectwithinternalor

externaldatasources,APIsandenterprisesystemsthroughastandardizedprotocol.

Ratherthandevelopingbespokeintegrations

foreachagent-taskpairing,MCPallowsagentstoactasclientsthatrequestaccesstoservicesviaMCP-compliantservers.Forexample,an

agentusingMCPcancheckacalendar,retrieveemails,updatedatabasecontentorupdate

CRMrecordsthroughasharedinterface.

Thissignificantlyreducesfriction,speedsup

deploymentandsupportsmodularplug-and-playcapabilitiesacrosstoolsandenvironments.

MCPhasgainedwidespreadsupportacrossleadingagentframeworksandisincreasinglyviewedasacoremechanismforconnecting

agentstothebroaderenterpriseinfrastructure.

IllustrationofMCP-basedagentcommunication

FIGURE3

MCP

client

messaging

MCP

client

database

MCP

client

database

AIagent1

AIagent2

1

Userupdatesarecord

Sendanemail

Readarecord

MCP

server

messaging

MCP

server

database

4

Acknowledgeupdate

3

2

MCPserverupdatesthedatabase

Messaging

Databaseupdateconfirmed

Database

AIAgentsinAction:FoundationsforEvaluationandGovernance9

OverviewofMCP

AIAgentsinAction:FoundationsforEvaluationandGovernance10

WhereMCPfocusesoncommunicationbetweenagentsandexternalorinternalsystems,protocolslikeA2Aenableagentstodiscovereachother,

interact,collaborateanddelegatetasks,whetheroperatingwithinanorganization’ssecurityperimeteroroutsideit.Theseprotocolsaddressagrowingneedincomplexenvironmentswheremultiple

agentsworktogetheracrossorganizationalortechnicalboundaries,enablingagentsfromdifferentvendorstocommunicateeffectively.

ReleasedbyGoogleinApril2025,7A2Aoperatesthroughacommoncommunicationinterfaceandintroducestheconceptofagentcards(similartomodelcards8),whicharestructureddescriptionsofanagent’sidentity,alongwithitscapabilities

andskills.Thisallowsforautomaticdiscoveryandcoordinationbetweenagentsandsystems.

4

FIGURE

Illustrationofagent-to-agentcommunicationprotocol

A2Aprotocol

Agentscard

Task

manager

MCP

A2A

Artefacthandler

APIsandenterpriseapplications

APIsandenterpriseapplications

AIagent2

Agents

LLM

Agentframework

AIagent1

Agentframework

Agents

LLM

Beyondcommunicationanddiscovery,new

standardsarealsoemergingthataddresshowagentstransactandexchangevalue.ReleasedbyGoogleinSeptember2025,theAgent

PaymentsProtocol(AP2)9enablessecure,auditabletransactionsunderuser-definedlimits.UnlikeMCPandA2A,whichfocusondataexchangeandtaskcoordination,AP2addressescomplexfinancialoperations.

Despitethisprogress,interoperabilityremainsakeychallenge.Technicalcompatibilityalonedoesnotguaranteesuccessfulcoordination

betweenagents.Strategy,privacyandsecurityconsiderationsoftenshapehowandwhether

systemsshouldbeintegratedandareimportantforenterprisestocarefullyconsider.

Forexample,communicationbetweendifferentagentscouldraiseconcernsaboutaccesscontrol,dataconfidentialityorcomplianceacrossjurisdictions.Choosingwhethertoexposeacapabilitytootheragentsbecomesagovernancedecisionasmuchasatechnicalchoice.

AIAgentsinAction:FoundationsforEvaluationandGovernance11

Cybersecurityconsiderations

Security

strategieshave

evolvedfrom

perimeterdefencestolayered“defenceindepth”andmorerecentlytothe

zero-trustmodel.

1.3

AsAIagentsmoveintoenterpriseandconsumer-facingenvironments,theyextendratherthan

replaceexistingsecuritychallenges.Security

strategieshaveevolvedfromperimeterdefencestolayered“defenceindepth,”andmorerecentlytothezero-trustmodel.10Thesechangesreflectbroadertransformationssuchascloudadoption,distributedworkforcesandinterconnected

ecosystems,allofwhichhavealreadyweakenedthenotionofaclearboundarybetweeninternalandexternalnetworks.Agentsbuildonthis

trajectorybutaddadditionallayersofriskthatmustbemanagedproactively.

Byautonomouslyinvokingtoolsandcommunicatingacrossorganizationallines(e.g.viaMCPand

A2A),agentsembedexternalservices,databasesandpeeragentsintoenterpriseworkflows.Thismultiplicationofidentitiesandconnectionsmakesidentitymanagement,micro-segmentationandongoingverificationofagentactivityessential.

WhileprotocolssuchasMCPandA2Acan

streamlineintegration,theyalsoexpandtheattacksurface11byintroducingnewexternaldependenciesandinterfaces,asillustratedinFigure2.Thevery

interoperabilitythatenhancesagentcapabilities

alsoexposesenterprisestounpredictableinputsandvulnerabilitiesfromthirdparties.Foradopters,thismeansthateveryagentinteractionshouldbetreatedasuntrustedbydefault,andthatverifyingidentity,permissionsandcontextisnecessary

beforegrantingaccess.

Finally,agentscanbemisused.12Theymightbe

exploitedthroughdesignflawsorpromptinjections,orevenintentionallydeployedformaliciouspurposes,suchasaccessingprivatedataorspreading

misinformation.Unliketraditionalattacks,autonomousagentscanactwithspeedandpersistence,makingattributionandaccountabilityharder.Organizationsshouldprepareforthisbyimplementingstrong

audittrails,incidentresponseplansandclearaccountabilitystructures.

AIAgentsinAction:FoundationsforEvaluationandGovernance12

2

Systematic

classificationis

importantbecauseitprovidesa

commonbasisforcomparingagents,anticipatingrisksandlinking

evaluationandgovernance.

FoundationsforAIagentevaluationandgovernance

AstructuredfoundationforevaluatingandgoverningAIagentsenablesconsistent

assessmentandoversightacrosscontexts.

AsAIagentsmatureandadoptionincreases,a

functionalunderstandingoftheirrolesandpropertiesisbeginningtotakeshape.Ratherthanclassifying

agentssolelybymodality(e.g.text,speech,vision)

ordomain(e.g.customerservice,decisionsupport,workfloworchestration),itismoreeffectiveto

evaluatethemaccordingtotheirintendedpurpose,corepropertiesandoperatingcontext.Thisapproachcreatesaclearerfoundationforassessingimpacts

anddesigningsafeguardsthatareproportionatetoanagent’srole.Systematicclassificationisimportantbecauseitprovidesacommonbasisforcomparingagents,anticipatingrisksandlinkingevaluation

andgovernancedecisionstotherealitiesofhow

anagentoperates.Withoutit,oversightrisksmaybecomeinconsistent,reactiveordisconnectedfromanagent’sactualcapabilitiesandenvironment.

Toestablishthisfoundation,thisreport

introducesfourfoundationalpillarswhich,incombination,provideastructured

approachtoassessmentandadoption:

–Classification:Establishtheagent’scharacteristicsandoperationalcontexttoinformdownstreamassessment.

–Evaluation:Generateevidenceofperformanceandlimitationsinrepresentativesettings.

–Riskassessment:Analysepotentialharmusingclassificationandevaluationasinputs.

–Governance:Translateclassification,evaluationandriskassessmentresultsintosafeguardsandaccountability

proportionatetotheagent’sprofile.

ThesefoundationsapplytodiverseAIagents,encompassingbothvirtualandembodied

systemsindifferentoperationalcontexts.

Theyprovideaconsistentbasisforassessing

performance,identifyingrisksandestablishinggovernancemechanismsthatscalewithan

agent’sautonomy,authorityandfunction.

Toaddressclassification,evaluation,riskassessmentandgovernance,itisusefultodistinguishbetweentwomainstakeholderperspectives:13

–Provider:ReferstoorganizationsorindividualsthatsupplyAIsystems,platformsortools.Theirresponsibilitiesincludeensuringthatproductsaredevelopedandmaintainedinaccordance

withresponsibleandethicalguidelines,and

thatthenecessarydocumentationandsupportareprovided.

–Adopter:Referstoindividualswithinan

organizationwhouseAIsystems,encompassingresponsibilitiessuchasprocurementand

deployment.Procurementinvolvesthe

responsibilityofacquiringAIsolutionsfor

organizationalusebyconductingduediligenceandensuringthatallAIagentsolutionscomply

withorganizationalpoliciesandregulatory

requirements.DeploymentistheresponsibilityforimplementingAIsystemsinaccordancewithdocumentedrequirementsandplans,while

ensuringthatrisksandimpactsoftheAIagentareproperlyassessedandmanaged.

Theadopterdependsontheproviderfor

transparentdocumentation,modelandsystem

specifications,andsufficientperformanceandriskinformationtosupportresponsibledeploymentandoversightthroughoutthesystemlifecycle.

Thefourpillarsformacontinuousandparallel

progressioninwhichclassificationprovides

structure,evaluationestablishesevidence

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论