版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省双江县第一中学2026届数学高一上期末质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数满足,则()A. B.C. D.2.为了得到函数的图象,只需把函数的图象上所有点()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度3.设奇函数f(x)在(0,+∞)上为减函数,且f(1)=0,则不等式<0的解集为()A.(-1,0)∪(1,+∞) B.(-∞,-1)∪(0,1)C.(-∞,-1)∪(1,+∞) D.(-1,0)∪(0,1)4.已知向量,,,则A. B.C. D.5.函数fxA.2π B.-πC.π D.π6.已知集合,,则中元素的个数是()A. B.C. D.7.已知命题,,则为()A., B.,C., D.,8.已知实数满足方程,则的最小值和最大值分别为()A.-9,1 B.-10,1C.-9,2 D.-10,29.设点关于坐标原点的对称点是B,则等于()A.4 B.C. D.210.若函数的零点所在的区间为,则实数a的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知定义在上的奇函数满足,且当时,,则__________.12.已知向量,其中,若,则的值为_________.13.若,,,则的最小值为______.14.的定义域为_________;若,则_____15.不等式的解集为_________________.16.函数的零点为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.若函数定义域为,且存在非零实数,使得对于任意恒成立,称函数满足性质(1)分别判断下列函数是否满足性质并说明理由①②(2)若函数既满足性质,又满足性质,求函数的解析式(3)若函数满足性质,求证:存在,使得18.如图是函数的部分图像,是它与轴的两个不同交点,是之间的最高点且横坐标为,点是线段的中点.(1)求函数的解析式及上的单调增区间;(2)若时,函数的最小值为,求实数的值.19.已知某公司生产某款手机的年固定成本为400万元,每生产1万部还需另投入160万元设公司一年内共生产该款手机万部且并全部销售完,每万部的收入为万元,且写出年利润万元关于年产量(万部)的函数关系式;当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润20.已知函数,两相邻对称中心之间的距离为(1)求函数的最小正周期和的解析式.(2)求函数的单调递增区间.21.已知函数的部分图象如下图所示.(1)求函数解析式,并写出函数的单调递增区间;(2)将函数图象上所有点的横坐标缩短到原来的(纵坐标不变),再将所得的函数图象上所有点向左平移个单位长度,得到函数的图象.若函数的图象关于直线对称,求函数在区间上的值域.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据二次函数的对称轴、开口方向确定正确选项.【详解】依题意可知,二次函数的开口向下,对称轴,,在上递减,所以,即.故选:B2、D【解析】利用三角函数图象的平移变换及诱导公式即可求解.【详解】将函数的图象向右平移个单位长度得到.故选:D.3、C【解析】利用函数奇偶性,等价转化目标不等式,再结合已知条件以及函数单调性,即可求得不等式解集.【详解】∵f(x)为奇函数,故可得,则<0等价于.∵f(x)在(0,+∞)上为减函数且f(1)=0,∴当x>1时,f(x)<0.∵奇函数图象关于原点对称,∴在(-∞,0)上f(x)为减函数且f(-1)=0,即x<-1时,f(x)>0.综上使<0的解集为(-∞,-1)∪(1,+∞)故选:.【点睛】本题考查利用函数奇偶性和单调性解不等式,属综合基础题.4、D【解析】A项:利用向量的坐标运算以及向量共线的等价条件即可判断.B项:利用向量模的公式即可判断.C项:利用向量的坐标运算求出数量积即可比较大小.D项:利用向量加法的坐标运算即可判断.【详解】A选项:因为,,所以与不共线.B选项:,,显然,不正确.C选项:因为,所以,不正确;D选项:因为,所以,正确;答案为D.【点睛】主要考查向量加、减、数乘、数量积的坐标运算,还有向量模的公式以及向量共线的等价条件的运用.属于基础题.5、C【解析】由题意得ω=2,再代入三角函数的周期公式T=【详解】根据三角函数的周期公式T=2π函数fx=cos故选:C6、B【解析】根据并集的定义进行求解即可.【详解】由题意得,,显然中元素的个数是5.故选:B7、A【解析】特称命题的否定为全称命题,所以,存在性量词改为全称量词,结论直接改否定即可.【详解】命题,,则:,答案选A【点睛】本题考查命题的否定,属于简单题.8、A【解析】即为y-2x可看作是直线y=2x+b在y轴上的截距,当直线y=2x+b与圆相切时,纵截距b取得最大值或最小值,此时,解得b=-9或1.所以y-2x的最大值为1,最小值为-9故选A.9、A【解析】求出点关于坐标原点的对称点是B,再利用两点之间的距离即可求得结果.【详解】点关于坐标原点的对称点是故选:A10、C【解析】由函数的性质可得在上是增函数,再由函数零点存在定理列不等式组,即可求解得a的取值范围.【详解】易知函数在上单调递增,且函数零点所在的区间为,所以,解得故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、##【解析】先求得是周期为的周期函数,然后结合周期性、奇偶性求得.【详解】因为函数为上的奇函数,所以,故,函数是周期为4的周期函数.当时,,则.故答案为:12、4【解析】利用向量共线定理即可得出【详解】∵∥,∴=8,解得,其中,故答案为【点睛】本题考查了向量共线定理,考查了向量的坐标运算,属于基础题13、【解析】利用基本不等式求出即可.【详解】解:若,,则,当且仅当时,取等号则的最小值为.故答案为:.【点睛】本题考查了基本不等式的应用,属于基础题.14、①.;②.3.【解析】空一:根据正切型函数的定义域进行求解即可;空二:根据两角和的正切公式进行求解即可.【详解】空一:由函数解析式可知:,所以该函数的定义域为:;空二:因为,所以.故答案为:;15、或.【解析】利用一元二次不等式的求解方法进行求解.【详解】因为,所以,所以或,所以不等式的解集为或.故答案为:或.16、1和【解析】由,解得的值,即可得结果【详解】因为,若,则,即,整理得:可解得:或,即函数的零点为1和,故答案为1和.【点睛】本题主要考查函数零点的计算,意在考查对基础知识的理解与应用,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)①②满足性质,理由见解析(2)(3)证明见解析【解析】(1)计算,,得到答案.(2)根据函数性质变换得到,,,解得答案.(3)根据函数性质得到,取,当时满足条件,得到答案.【小问1详解】,故满足;,故满足.【小问2详解】且,故,,,解得.【小问3详解】,故,取得到,即,取,当时,,故存在满足.18、(1)(2)【解析】(1)由点是线段的中点,可得和的坐标,从而得最值和周期,可得和,再代入顶点坐标可得,再利用整体换元可求单调区间;(2)令得到,讨论二次函数的对称轴与区间的位置关系求最值即可.【详解】(1)因为为中点,,所以,,则,,又因为,则所以,由又因为,则所以令又因为则单调递增区间为.(2)因为所以令,则对称轴为①当时,即时,;②当时,即时,(舍)③当时,即时,(舍)综上可得:.【点睛】本题主要考查了利用三角函数的图象求解三角函数的解析式及二次函数轴动区间定的最值问题,考查了学生的分类讨论思想及计算能力,属于中档题.19、(1),;(2)当时,y取得最大值57600万元【解析】根据题意,即可求解利润关于产量的关系式为,化简即可求出;由(1)的关系式,利用基本不等式求得最大值,即可求解最大利润【详解】(1)由题意,可得利润关于年产量的函数关系式为,.由可得,当且仅当,即时取等号,所以当时,y取得最大值57600万元【点睛】本题主要考查了函数的实际应用问题,以及利用基本不等式求最值,其中解答中认真审题,得出利润关于年产量的函数关系式,再利用基本不等式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题20、(1),(2)【解析】(1)根据相邻对称中心之间间隔可求得最小正周期和,由此可得解析式;(2)令,解不等式即可得到所求单调递增区间.小问1详解】两相邻对称中心之间的距离为,的最小正周期,,解得:,;【小问2详解】令,解得:,的单调递增区间为.21、(1),递增区间为;(2).【解析】(1)由三角函数的图象,求得函数的解析式,结合三角函数的性质,即可求解.(2)由三角函数的图象变换,求得,根据的图象关于直线对称,求得的值,得到,结合三角函数的性质,即可求解.【详解】(1)由图象可知,,所以,所以,由图可求出最低点的坐标为,所以,所以,所以,因为,所以,所以,由,可得.所以函数的单调递
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 查对制度试题及答案
- 天然气项目商业计划书
- 聚醚醚酮医用材料生产项目可行性研究报告
- 2025乐理中级考试题及答案
- 2025年建设工程质量检测人员建筑材料能力验证试题及答案
- 智能化建筑机械设备制造项目规划设计方案
- 六孔施工方案(3篇)
- 2025年有限空间作业人员安全知识考试试题(含答案)
- srtp管施工方案(3篇)
- 景观河堤施工方案(3篇)
- 私人司机合同范本
- 农村房屋安全排查培训
- 2025年河北体育学院竞争性选调工作人员14名(第三批)考试模拟卷附答案解析
- 《资源与运营管理》期末机考资料
- 股权抵押分红协议书
- 《数字化测图》实训指导书
- 电影监制的合同范本
- 2025年高级农艺工考试题及答案
- 铁路工务安全管理存在的问题及对策
- 2025广东茂名市高州市市属国有企业招聘企业人员总及笔试历年参考题库附带答案详解
- 2023年考研历史学模拟试卷及答案 古代希腊文明
评论
0/150
提交评论