版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省天水一中2026届高一上数学期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数若,则实数的值是()A.1 B.2C.3 D.42.函数在的图象大致为()A. B.C. D.3.设,,,则,,的大小关系是()A. B.C. D.4.已知函数则A. B.C. D.5.若,则的最小值为()A.4 B.3C.2 D.16.如图,四边形ABCD是平行四边形,则12A.AB B.CDC.CB D.AD7.设集合,则集合的元素个数为()A.0 B.1C.2 D.38.方程的解为,若,则A. B.C. D.9.已知四面体ABCD中,E,F分别是AC,BD的中点,若AB=6,CD=8,EF=5,则AB与CD所成角的度数为A.30° B.45°C.60° D.90°10.要得到函数的图象,只需将函数的图象A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,则=____________12.已知,,,,则______.13.设为向量的夹角,且,,则的取值范围是_____.14.已知圆心角为2rad的扇形的周长为12,则该扇形的面积为____________.15.高斯是德国著名的数学家,用其名字命名的“高斯函数”为,其中表示不超过x的最大整数.例如:,.已知函数,若,则________;不等式的解集为________.16.已知函数,,则________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在平面直角坐标系中,已知,,动点满足.(1)若,求面积的最大值;(2)已知,是否存在点C,使得,若存在,求点C的个数;若不存在,说明理由.18.已知角的顶点与原点重合,角的始边与轴的非负半轴重合,并满足:,且有意义.(1)试判断角的终边在第几象限;(2)若角的终边上一点,且为坐标原点),求的值及的值.19.年,全世界范围内都受到“新冠”疫情的影响,了解某些细菌、病毒的生存条件、繁殖习性等对于预防疾病的传播、保护环境有极其重要的意义.某科研团队在培养基中放入一定量某种细菌进行研究.经过分钟菌落的覆盖面积为,经过分钟覆盖面积为,后期其蔓延速度越来越快;现菌落的覆盖面积(单位:)与经过时间(单位:)的关系有两个函数模型与可供选择.(参考数据:,,,,,,)(1)试判断哪个函数模型更合适,说明理由,并求出该模型的解析式;(2)在理想状态下,至少经过多久培养基中菌落面积能超过?(结果保留到整数)20.已知点,,.(1)若,求的值;(2)若,其中为坐标原点,求的值.21.已知函数(Ⅰ)当时,求在区间上的值域;(Ⅱ)当时,是否存在这样的实数a,使方程在区间内有且只有一个根?若存在,求出a的取值范围;若不存在,请说明理由
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据分段函数分段处理的原则,求出,代入即可求解.【详解】由题意可知,,,又因为,所以,解得.故选:B.2、D【解析】先判断出函数的奇偶性,然后根据的符号判断出的大致图象.【详解】因为,所以,为奇函数,所以排除A项,又,所以排除B、C两项,故选:D【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.3、A【解析】根据指数函数与对数函数的图像与性质,结合中间量法,即可比较大小.【详解】由指数函数与对数函数的图像与性质可知综上可知,大小关系为故选:A【点睛】本题考查了指数函数与对数函数的图像与性质的应用,中间值法是比较大小常用方法,属于基础题.4、A【解析】,.5、D【解析】利用“乘1法”即得.【详解】因为,所以,∴,当且仅当时,即时取等号,所以的最小值为1.故选:D.6、D【解析】由线性运算的加法法则即可求解.【详解】如图,设AC,BD交于点O,则12故选:D7、B【解析】解出集合中的不等式,得到集合中的元素,利用交集的运算即可得到结果.【详解】集合,所以.故选:B.8、C【解析】令,∵,.∴函数在区间上有零点∴.选C9、D【解析】取BC的中点P,连接PE,PF,则∠FPE(或补角)是AB与CD所成的角,利用勾股定理可求该角为直角.【详解】如图,取BC的中点P,连接PE,PF,则PF//CD,∠FPE(或补角)是AB与CD所成的角,∵AB=6,CD=8,∴PF=4,PE=3,而EF=5,所以PF2+P故选:D.【点睛】本题考查异面直线所成的角,此类问题一般需要通过平移构建平面角,再利用解三角形的方法求解.10、C【解析】化函数解析式为,再由图象平移的概念可得【详解】解要得到函数的图象,只需将函数的图象向左平移个单位,即:故选C【点睛】本题考查函数图象平移变换,要注意的左右平移变换只针对自变量加减,即函数的图象向左平移个单位,得图象的解析式为二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由函数解析式,先求得,再求得代入即得解.【详解】函数,则==,故答案为.【点睛】本题考查函数值的求法,属于基础题.12、【解析】利用两角和的正弦公式即可得结果.【详解】因为,,所以,由,,可得,,所以.故答案为:.13、【解析】将平方可得cosθ,利用对勾函数性质可得最小值,从而得解.【详解】两个不共线的向量,的夹角为θ,且,可得:,可得cosθ那么cosθ的取值范围:故答案为【点睛】本题考查向量的数量积的应用,向量夹角的求法,考查计算能力,属于中档题.14、9【解析】根据题意条件,先设出扇形的半径和弧长,并找到弧长与半径之间的关系,通过已知的扇形周长,可以求解出扇形的半径和弧长,然后再利用完成求解.【详解】设扇形的半径为,弧长为,由已知得,圆心角,则,因为扇形的周长为12,所以,所以,,则.故答案为:9.15、①.②.【解析】第一空:”根据“高斯函数”的定义,可得,进而再分类讨论建立方程求值即可;第二空:分类讨论建立不等式求解即可.【详解】由题意,得,当时,,即;当时,,即(舍),综上;当时,,即,当时,,即,综上,.故答案为:;.【点睛】关键点睛:求解分段函数相关问题的关键是“分段归类”,即应用分类讨论思想.16、【解析】发现,计算可得结果.【详解】因为,,且,则.故答案为-2【点睛】本题主要考查函数的性质,由函数解析式,计算发现是关键,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)存在2个点C符合要求【解析】(1)由,利用两点间距离公式可得,整理得到,由,若面积最大,则到距离最大,即最大,求解即可;(2)由,利用两点间距离公式可得,整理得到,则点为圆与圆的交点,进而由两圆的位置关系即可得到符合条件的点的个数【详解】解:(1)由,得,化简,即,所以,当时,有最大值,此时点到距离最大为,因为,所以面积的最大值为(2)存在,由,得,化简得,即.故点C在以为圆心,半径为2的圆上,结合(1)中知,点C还在以为圆心,半径为的圆上,由于,,,且,所以圆M、圆N相交,有2个公共点,故存在2个点C符合要求.【点睛】本题考查两点间距离公式的应用,考查圆与圆的位置关系的应用,考查运算能力18、(1)第四象限;(2),.【解析】(1)根据题意得sinα<0,cosα>0进而求得答案.(2)先求得m的值,进而利用三角函数定义求得答案【详解】(1)由,得,由有意义,可知,所以是第四象限角.(2)因为,所以,解得又为第四象限角,故,从而,.【点睛】本题主要考查了三角函数的符号及象限的判断,考查三角函数定义,解题过程中特别注意三角函数符号的判断,是基础题19、(1)应选模型为,理由见解析;(2)【解析】(1)根据增长速度可知应选,根据已知数据可构造方程组求得,进而得到函数模型;(2)根据函数模型可直接构造不等式,结合参考数据计算可得,由此可得结论.小问1详解】的增长速度越来越快,的增长速度越来越慢,应选模型为;则,解得:,,又,函数模型为;【小问2详解】由题意得:,即,,,,至少经过培养基中菌落面积能超过.20、(1);(2).【解析】(1)因为,,,所以,.因为所以,化简即可得的值;(2)因为,,所以,因为,所以,平方即可求得的值.试题解析:(1)因为,,,所以,.因为所以.化简得因为(若,则,上式不成立).所以.(2)因为,,所以,因,所以,所以,所以,,因为,所以,故.21、(Ⅰ);(Ⅱ)存在,.【解析】(Ⅰ)先把代入解析式,再求对称轴,进而得到函数的单调性,即可求出值域;(Ⅱ)函数在区间内有且只有一个零点,转化为函数和的图象在内有唯一交点,根据中是否为零,分类讨论,结合函数的性质,即可求解.【详解】(Ⅰ)当时,,对称轴为:,所以函数在区间单调递减,在区间单调递增;则,所以在区间上的值域为;(Ⅱ)由,令,可得,即,令,,,函数在区间内有且只有一个零点,等价于两个函数与的图象在内有唯一交点;①当时,在上递减,在上递增,而,所以函数与的图象在内有唯一交点.②当时,图象开口向下,对称轴为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人卫护理药理学与药物治疗学
- 中药封包护理的护理服务质量提升
- 2025年办公室休息区清洁协议(舒适)
- 《铝线路印制板规范》-编制说明
- 基于AI的影视内容版权交易模式创新
- 2025年光影噪音计 噪音可视化灯饰设计方案
- 2026 年中职康复技术(康复理疗实操)试题及答案
- 常识题库及答案及解析
- 2025年海南省公需课学习-生态保护红线划定与管理
- 2025年营养健康厨艺大赛营养知识竞赛试题及答案(共100题)
- 2025年下半年上海当代艺术博物馆公开招聘工作人员(第二批)参考笔试试题及答案解析
- 2026国家粮食和物资储备局垂直管理局事业单位招聘应届毕业生27人考试历年真题汇编附答案解析
- 癌性疼痛的中医治疗
- 大学生就业面试培训
- 2026年旅行社经营管理(旅行社管理)考题及答案
- 2024年江苏省普通高中学业水平测试小高考生物、地理、历史、政治试卷及答案(综合版)
- 家具制造企业安全检查表优质资料
- 如家酒店新版
- GA 1016-2012枪支(弹药)库室风险等级划分与安全防范要求
- 《电能质量分析》课程教学大纲
- 8 泵站设备安装工程单元工程质量验收评定表及填表说明
评论
0/150
提交评论