版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届广西北海中学高三数学第一学期期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,角,,的对边分别为,,,若,,,则()A. B.3 C. D.42.在平面直角坐标系中,锐角顶点在坐标原点,始边为x轴正半轴,终边与单位圆交于点,则()A. B. C. D.3.已知为定义在上的奇函数,若当时,(为实数),则关于的不等式的解集是()A. B. C. D.4.执行如图所示的程序框图,若输出的结果为3,则可输入的实数值的个数为()A.1 B.2 C.3 D.45.设,,,则、、的大小关系为()A. B. C. D.6.的展开式中,含项的系数为()A. B. C. D.7.若,则()A. B. C. D.8.函数的图象大致为A. B. C. D.9.在复平面内,复数(为虚数单位)的共轭复数对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.若直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为坐标原点),则k的值为()A. B. C.或- D.和-11.抛物线的准线与轴的交点为点,过点作直线与抛物线交于、两点,使得是的中点,则直线的斜率为()A. B. C.1 D.12.命题“”的否定为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.甲,乙两队参加关于“一带一路”知识竞赛,甲队有编号为1,2,3的三名运动员,乙队有编号为1,2,3,4的四名运动员,若两队各出一名队员进行比赛,则出场的两名运动员编号相同的概率为______.14.已知随机变量,且,则______15.《九章算术》中记载了“今有共买豕,人出一百,盈一百;人出九十,适足。问人数、豕价各几何?”.其意思是“若干个人合买一头猪,若每人出100,则会剩下100;若每人出90,则不多也不少。问人数、猪价各多少?”.设分别为人数、猪价,则___,___.16.已知集合,,则_____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)2018年反映社会现实的电影《我不是药神》引起了很大的轰动,治疗特种病的创新药研发成了当务之急.为此,某药企加大了研发投入,市场上治疗一类慢性病的特效药品的研发费用(百万元)和销量(万盒)的统计数据如下:研发费用(百万元)2361013151821销量(万盒)1122.53.53.54.56(1)求与的相关系数精确到0.01,并判断与的关系是否可用线性回归方程模型拟合?(规定:时,可用线性回归方程模型拟合);(2)该药企准备生产药品的三类不同的剂型,,,并对其进行两次检测,当第一次检测合格后,才能进行第二次检测.第一次检测时,三类剂型,,合格的概率分别为,,,第二次检测时,三类剂型,,合格的概率分别为,,.两次检测过程相互独立,设经过两次检测后,,三类剂型合格的种类数为,求的数学期望.附:(1)相关系数(2),,,.18.(12分)已知曲线:和:(为参数).以原点为极点,轴的正半轴为极轴,建立极坐标系,且两种坐标系中取相同的长度单位.(1)求曲线的直角坐标方程和的方程化为极坐标方程;(2)设与,轴交于,两点,且线段的中点为.若射线与,交于,两点,求,两点间的距离.19.(12分)已知抛物线E:y2=2px(p>0),焦点F到准线的距离为3,抛物线E上的两个动点A(x1,y1)和B(x2,y2),其中x1≠x2且x1+x2=1.线段AB的垂直平分线与x轴交于点C.(1)求抛物线E的方程;(2)求△ABC面积的最大值.20.(12分)已知命题:,;命题:函数无零点.(1)若为假,求实数的取值范围;(2)若为假,为真,求实数的取值范围.21.(12分)已知椭圆的焦距为2,且过点.(1)求椭圆的方程;(2)设为的左焦点,点为直线上任意一点,过点作的垂线交于两点,(ⅰ)证明:平分线段(其中为坐标原点);(ⅱ)当取最小值时,求点的坐标.22.(10分)已知在中,角,,的对边分别为,,,且.(1)求的值;(2)若,求面积的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由正弦定理及条件可得,即.,∴,由余弦定理得。∴.选B。2、A【解析】
根据单位圆以及角度范围,可得,然后根据三角函数定义,可得,最后根据两角和的正弦公式,二倍角公式,简单计算,可得结果.【详解】由题可知:,又为锐角所以,根据三角函数的定义:所以由所以故选:A【点睛】本题考查三角函数的定义以及两角和正弦公式,还考查二倍角的正弦、余弦公式,难点在于公式的计算,识记公式,简单计算,属基础题.3、A【解析】
先根据奇函数求出m的值,然后结合单调性求解不等式.【详解】据题意,得,得,所以当时,.分析知,函数在上为增函数.又,所以.又,所以,所以,故选A.【点睛】本题主要考查函数的性质应用,侧重考查数学抽象和数学运算的核心素养.4、C【解析】试题分析:根据题意,当时,令,得;当时,令,得,故输入的实数值的个数为1.考点:程序框图.5、D【解析】
因为,,所以且在上单调递减,且所以,所以,又因为,,所以,所以.故选:D.【点睛】本题考查利用指对数函数的单调性比较指对数的大小,难度一般.除了可以直接利用单调性比较大小,还可以根据中间值“”比较大小.6、B【解析】
在二项展开式的通项公式中,令的幂指数等于,求出的值,即可求得含项的系数.【详解】的展开式通项为,令,得,可得含项的系数为.故选:B.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.7、D【解析】
直接利用二倍角余弦公式与弦化切即可得到结果.【详解】∵,∴,故选D【点睛】本题考查的知识要点:三角函数关系式的恒等变变换,同角三角函数关系式的应用,主要考查学生的运算能力和转化能力,属于基础题型.8、D【解析】
由题可得函数的定义域为,因为,所以函数为奇函数,排除选项B;又,,所以排除选项A、C,故选D.9、D【解析】
将复数化简得,,即可得到对应的点为,即可得出结果.【详解】,对应的点位于第四象限.故选:.【点睛】本题考查复数的四则运算,考查共轭复数和复数与平面内点的对应,难度容易.10、C【解析】
直线过定点,直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为原点),可以发现∠QOx的大小,求得结果.【详解】如图,直线过定点(0,1),∵∠POQ=120°∴∠OPQ=30°,⇒∠1=120°,∠2=60°,∴由对称性可知k=±.故选C.【点睛】本题考查过定点的直线系问题,以及直线和圆的位置关系,是基础题.11、B【解析】
设点、,设直线的方程为,由题意得出,将直线的方程与抛物线的方程联立,列出韦达定理,结合可求得的值,由此可得出直线的斜率.【详解】由题意可知点,设点、,设直线的方程为,由于点是的中点,则,将直线的方程与抛物线的方程联立得,整理得,由韦达定理得,得,,解得,因此,直线的斜率为.故选:B.【点睛】本题考查直线斜率的求解,考查直线与抛物线的综合问题,涉及韦达定理设而不求法的应用,考查运算求解能力,属于中等题.12、C【解析】
套用命题的否定形式即可.【详解】命题“”的否定为“”,所以命题“”的否定为“”.故选:C【点睛】本题考查全称命题的否定,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
出场运动员编号相同的事件显然有3种,计算出总的基本事件数,由古典概型概率计算公式求得答案.【详解】甲队有编号为1,2,3的三名运动员,乙队有编号为1,2,3,4的四名运动员,出场的两名运动员编号相同的事件数为3,出现的基本事件总数,则出场的两名运动员编号相同的概率为.故答案为:【点睛】本题考查求古典概率的概率问题,属于基础题.14、0.1【解析】
根据原则,可得,简单计算,可得结果.【详解】由题可知:随机变量,则期望为所以故答案为:【点睛】本题考查正态分布的计算,掌握正态曲线的图形以及计算,属基础题.15、10900【解析】
由题意列出方程组,求解即可.【详解】由题意可得,解得.故答案为10900【点睛】本题主要考查二元一次方程组的解法,用消元法来求解即可,属于基础题型.16、【解析】
由集合和集合求出交集即可.【详解】解:集合,,.故答案为:.【点睛】本题考查了交集及其运算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)0.98;可用线性回归模型拟合.(2)【解析】
(1)根据题目提供的数据求出,代入相关系数公式求出,根据的大小来确定结果;(2)求出药品的每类剂型经过两次检测后合格的概率,发现它们相同,那么经过两次检测后,,三类剂型合格的种类数为,服从二项分布,利用二项分布的期望公式求解即可.【详解】解:(1)由题意可知,,由公式,,∴与的关系可用线性回归模型拟合;(2)药品的每类剂型经过两次检测后合格的概率分别为,,,由题意,,.【点睛】本题考查相关系数的求解,考查二项分布的期望,是中档题.18、(1),;(2)1.【解析】
(1)利用正弦的和角公式,结合极坐标化为直角坐标的公式,即可求得曲线的直角坐标方程;先写出曲线的普通方程,再利用公式化简为极坐标即可;(2)先求出的直角坐标,据此求得中点的直角坐标,将其转化为极坐标,联立曲线的极坐标方程,即可求得两点的极坐标,则距离可解.【详解】(1):可整理为,利用公式可得其直角坐标方程为:,:的普通方程为,利用公式可得其极坐标方程为(2)由(1)可得的直角坐标方程为,故容易得,,∴,∴的极坐标方程为,把代入得,.把代入得,.∴,即,两点间的距离为1.【点睛】本题考查极坐标方程和直角坐标方程之间的转化,涉及参数方程转化为普通方程,以及在极坐标系中求两点之间的距离,属综合基础题.19、(1)y2=6x(2).【解析】
(1)根据抛物线定义,写出焦点坐标和准线方程,列方程即可得解;(2)根据中点坐标表示出|AB|和点到直线的距离,得出面积,利用均值不等式求解最大值.【详解】(1)抛物线E:y2=2px(p>0),焦点F(,0)到准线x的距离为3,可得p=3,即有抛物线方程为y2=6x;(2)设线段AB的中点为M(x0,y0),则,y0,kAB,则线段AB的垂直平分线方程为y﹣y0(x﹣2),①可得x=5,y=0是①的一个解,所以AB的垂直平分线与x轴的交点C为定点,且点C(5,0),由①可得直线AB的方程为y﹣y0(x﹣2),即x(y﹣y0)+2②代入y2=6x可得y2=2y0(y﹣y0)+12,即y2﹣2y0y+2y02=0③,由题意y1,y2是方程③的两个实根,且y1≠y2,所以△=1y02﹣1(2y02﹣12)=﹣1y02+18>0,解得﹣2y0<2,|AB|,又C(5,0)到线段AB的距离h=|CM|,所以S△ABC|AB|h•,当且仅当9+y02=21﹣2y02,即y0=±,A(,),B(,),或A(,),B(,)时等号成立,所以S△ABC的最大值为.【点睛】此题考查根据焦点和准线关系求抛物线方程,根据直线与抛物线位置关系求解三角形面积的最值,表示三角形的面积关系常涉及韦达定理整体代入,抛物线中需要考虑设点坐标的技巧,处理最值问题常用函数单调性求解或均值不等式求最值.20、(1)(2)【解析】
(1)为假,则为真,求导,利用导函数研究函数有零点条件得的取值范围;(2)由为假,为真,知一真一假;分类讨论列不等式组可解.【详解】(1)依题意,为真,则无解,即无解;令,则,故当时,,单调递增,当,,单调递减,作出函数图象如下所示,观察可知,,即;(2)若为真,则,解得;由为假,为真,知一真一假;若真假,则实数满足,则;若假真,则实数满足,无解;综上所述,实数的取值范围为.【点睛】本题考查根据全(特)称命题的真假求参数的问题.其思路:与全称命题或特称命题真假有关的参数取值范围问题的本质是恒成立问题或有解问题.解决此类问题时,一般先利用等价转化思想将条件合理转化,得到关于参数的方程或不等式(组),再通过解方程或不等式(组)求出参数的值或范围.21、(1)(2)(ⅰ)见解析(ⅱ)点的坐标为.【解析】
(1)由题意得,再由的关系求出,即可得椭圆的标准方程;(2)(i)设,的中点为,,设直线的方程为,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 办公人员劳动协议合同(2025年)
- 办公空间续约合同协议2025年
- 2024年中考道德与法治(广西)第三次模拟考试(含答案)
- 2025年河北省公需课学习-国家基本公共服务标准1138
- 专科大学英语试卷及答案
- 江苏中考常州试卷及答案
- 汽修实操电器考试题及答案
- 临沂二模日语题库及答案
- 油漆供销合同范本
- 林业调查设计合同范本
- 装饰公司合伙协议书
- 尊崇宪法维护宪法
- 排水设施使用协议书
- 老年人失智症行为和精神症状(BPSD)护理方案
- 2025年超星尔雅学习通《环境经济学与生物资源管理》考试备考题库及答案解析
- 智慧树知到《创新创业与管理基础(东南大学)》章节测试附答案
- 铁塔冰冻应急预案
- 文物复仿制合同协议
- 主人翁精神课件
- 2025年1月浙江省高考技术试卷真题(含答案)
- 【低空经济】低空经济校企合作方案
评论
0/150
提交评论