版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省烟台市第二中学2026届数学高二上期末复习检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆:的左、右焦点分别为,,下顶点为,直线与椭圆的另一个交点为,若为等腰三角形,则椭圆的离心率为()A. B.C. D.2.如图,在三棱锥中,,则三棱锥外接球的表面积是()A. B.C. D.3.直线分别交坐标轴于A,B两点,O为坐标原点,三角形OAB的内切圆上有动点P,则的最小值为()A.16 B.18C.20 D.224.抛物线型太阳灶是利用太阳能辐射的一种装置.当旋转抛物面的主光轴指向太阳的时候,平行的太阳光线入射到旋转抛物面表面,经过反光材料的反射,这些反射光线都从它的焦点处通过,形成太阳光线的高密集区,抛物面的焦点在它的主光轴上.如图所示的太阳灶中,灶深CD即焦点到灶底(抛物线的顶点)的距离为1m,则灶口直径AB为()A.2m B.3mC.4m D.5m5.已知抛物线的焦点坐标是,则抛物线的标准方程为A. B.C. D.6.已知抛物线上一点M与焦点间的距离是3,则点M的纵坐标为()A.1 B.2C.3 D.47.抛物线的焦点坐标是()A. B.C. D.8.已知向量分别是直线的方向向量,若,则()A. B.C. D.9.数列满足,且,是函数的极值点,则的值是()A.2 B.3C.4 D.510.我国新冠肺炎疫情防控进入常态化,各地有序进行疫苗接种工作,下面是我国甲、乙两地连续11天的疫苗接种指数折线图,根据该折线图,下列说法不正确的是()A.这11天甲地指数和乙地指数均有增有减B.第3天至第11天,甲地指数和乙地指数都超过80%C.在这11天期间,乙地指数的增量大于甲地指数的增量D.第9天至第11天,乙地指数的增量大于甲地指数的增量11.已知抛物线上一横坐标为5的点到焦点的距离为6,且该抛物线的准线与双曲线(,)的两条渐近线所围成的三角形面积为,则双曲线C的离心率为()A.3 B.4C.6 D.912.“﹣3<m<4”是“方程表示椭圆”的()条件A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要二、填空题:本题共4小题,每小题5分,共20分。13.已知正三棱柱中,底面积为,一个侧面的周长为,则正三棱柱外接球的表面积为______.14.的展开式中的常数项为_______.15.若在数列的每相邻两项之间插入此两项的和,可形成新的数列,再把所得数列按照同样的方法不断进行构造,又可以得到新的数列.现将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;依次构造,第次得到数列1,,,,…,,2;记则______,设数列的前n项和为,则______16.瑞士数学家欧拉(Euler)1765年在所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知的顶点,,,则欧拉线的方程为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点是圆:上任意一点,是圆内一点,线段的垂直平分线与半径相交于点(1)当点在圆上运动时,求点的轨迹的方程;(2)设不经过坐标原点,且斜率为的直线与曲线相交于,两点,记,的斜率分别是,.当,都存在且不为时,试探究是否为定值?若是,求出此定值;若不是,请说明理由18.(12分)芯片作为在集成电路上的载体,广泛应用在手机、军工、航天等多个领域,是能够影响一个国家现代工业的重要因素.根据市场调研与统计,某公司七年时间里在芯片技术上的研发投入x(亿元)与收益y(亿元)的数据统计如下:(1)根据折线图的数据,求y关于x的线性回归方程(系数精确到整数部分);(2)为鼓励科技创新,当研发技术投入不少于16亿元时,国家给予公司补贴5亿元,预测当芯片的研发投入为17亿元时公司的实际收益附:其回归方程的斜率和截距的最小二乘法估计分别为,.参考数据,19.(12分)已知圆,是圆上一点,过A作直线l交圆C于另一点B,交x轴正半轴于点D,且A为的中点.(1)求圆C在点A处的切线方程;(2)求直线l的方程.20.(12分)已知椭圆,离心率为,椭圆上任一点满足(1)求椭圆的方程;(2)若动直线与椭圆相交于、两点,若坐标原点总在以为直径的圆外时,求的取值范围.21.(12分)已知动点M到点F(0,2)的距离,与点M到直线l:y=﹣2的距离相等.(1)求动点M的轨迹方程;(2)若过点F且斜率为1的直线与动点M的轨迹交于A,B两点,求线段AB的长度.22.(10分)求适合下列条件的圆锥曲线的标准方程(1)中心在原点,实轴在轴上,一个焦点在直线上的等轴双曲线;(2)椭圆的中心在原点,焦点在轴上,离心率等于,且它的一个顶点恰好是抛物线的焦点;(3)经过点抛物线
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由椭圆定义可得各边长,利用三角形相似,可得点坐标,再根据点在椭圆上,可得离心率.【详解】如图所示:因为为等腰三角形,且,又,所以,所以,过点作轴,垂足为,则,由,,得,因为点在椭圆上,所以,所以,即离心率,故选:B.2、A【解析】根据题意,将该几何体放置于正方体中截得,进而转化为求边长为2的正方体的外接球,再求解即可.【详解】解:因为在三棱锥中,,所以将三棱锥补形成正方体如图所示,正方体的边长为2,则体对角线长为,外接球的半径为,所以外接球的表面积为,故选:.3、B【解析】由题意,求出内切圆的半径和圆心坐标,设,则,由表示内切圆上的动点P到定点的距离的平方,从而即可求解最小值.【详解】解:因为直线分别交坐标轴于A,B两点,所以设,则,因为,所以三角形OAB的内切圆半径,内切圆圆心为,所以内切圆的方程为,设,则,因为表示内切圆上的动点P到定点的距离的平方,且在内切圆内,所以,所以,,即的最小值为18,故选:B.4、C【解析】建立如图所示的平面直角坐标系,设抛物线的方程为,根据是抛物线的焦点,求得抛物线的方程,进而求得的长.【详解】由题意,建立如图所示的平面直角坐标系,O与C重合,设抛物线的方程为,由题意可得是抛物线的焦点,即,可得,所以抛物线的方程为,当时,,所以.故选:C.5、D【解析】根据抛物线的焦点坐标得到2p=4,进而得到方程.【详解】抛物线的焦点坐标是,即p=2,2p=4,故得到方程为.故答案为D.【点睛】这个题目考查了抛物线的标准方程的求法,题目较为简单.6、B【解析】利用抛物线的定义求解即可【详解】抛物线的焦点为,准线方程为,因为抛物线上一点M与焦点间的距离是3,所以,得,即点M的纵坐标为2,故选:B7、C【解析】化为标准方程,利用焦点坐标公式求解.【详解】抛物线的标准方程为,所以抛物线的焦点在轴上,且,所以,所以抛物线的焦点坐标为.故选:C8、C【解析】由题意,得,由此可求出答案【详解】解:∵,且分别是直线的方向向量,∴,∴,∴,故选:C【点睛】本题主要考查向量共线的坐标表示,属于基础题9、C【解析】利用导数即可求出函数的极值点,再利用等差数列的性质及其对数的运算性质求解即可【详解】由,得,因为,是函数的极值点,所以,是方程两个实根,所以,因为数列满足,所以,所以数列为等差数列,所以,所以,故选:C10、C【解析】由折线图逐项分析得到答案.【详解】对于选项A,从折线图中可以直接观察出甲地和乙地的指数有增有减,故选项A正确;对于选项B,从第3天至第11天,甲地指数和乙地指数都超过80%,故选项B正确;对于选项C,从折线图上可以看出这11天甲的增量大于乙的增量,故选项C错误;对于选项D,从折线图上可以看出第9天至第11天,乙地指数的增量大于甲地指数的增量,故D正确;故选:C.11、A【解析】由题意求得抛物线的准线方程为,进而得到准线与双曲线C的渐近线围成的三角形面积,求得,再结合和离心率的定义,即可求解.【详解】由题意,抛物线上一横坐标为5的点到焦点的距离为6,根据抛物线定义,可得,即,所以抛物线的准线方程为,又由双曲线C的两条渐近线方程为,则抛物线的准线与双曲线C的两条渐近线围成的三角形面积为,解得,又由,可得,所以双曲线C的离心率.故选:A.12、B【解析】求出方程表示椭圆的充要条件是且,由此可得答案.【详解】因为方程表示椭圆的充要条件是,解得且,所以“﹣3<m<4”是“方程表示椭圆”的必要不充分条件.故选:B【点睛】本题考查了由方程表示椭圆求参数的范围,考查了充要条件和必要不充分条件,本题易错点警示:漏掉,本题属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】首先由条件求出底面边长和高,然后设、分别为上、下底面的的中心,连接,设的中点为,则点为正三棱柱外接球的球心,然后求出的长度即可.【详解】如图所示,设底面边长为,则底面面积为,所以,因此等边三角形的高为:,因为一个侧面的周长为,所以设、分别为上、下底面的的中心,连接,设的中点为则点为正三棱柱外接球的球心,连接、则在直角三角形中,即外接球的半径为,所以外接球的表面积为,故答案为:【点睛】关键点睛:求几何体的外接球半径的关键是根据几何体的性质找出球心的位置.14、15【解析】先求出二项式展开式的通项公式,然后令的次数为0,求出的值,从而可得展开式中的常数项【详解】二项式展开式的通项公式为,令,得,所以展开式中的常数项为故答案为:1515、①.81②.【解析】根据数列的构造写出前面几次得到的新数列,寻找规律,构造等比数列,求出通项公式,再进行求和.【详解】第1次得到数列1,3,2,此时;第2次得到数列1,4,3,5,2,此时;第3次得到数列1,5,4,7,3,8,5,7,2,此时;第4次得到数列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此时,故81,且故,又,所以数列是以为首项,公比为3的等比数列,所以,故,所以故答案为:81,16、【解析】根据给定信息,利用三角形重心坐标公式求出的重心,再结合对称性求出的外心,然后求出欧拉线的方程作答.【详解】因的顶点,,,则的重心,显然的外心在线段AC中垂线上,设,由得:,解得:,即点,直线,化简整理得:,所以欧拉线的方程为.故答案:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)是定值,.【解析】(1)根据给定条件探求得,再借助椭圆定义直接求得轨迹的方程.(2)设出直线的方程,再与轨迹的方程联立,借助韦达定理计算作答.【小问1详解】圆:的圆心,半径,因线段的垂直平分线与半径相交于点,则,而,于是得,因此,点的轨迹是以C,A为左右焦点,长轴长为4的椭圆,短半轴长有,所以轨迹的方程为.【小问2详解】依题意,设直线的方程为:,,由消去y并整理得:,,则且,设,则有,,因直线,的斜率,都存在且不为,因此,且,,,所以直线,的斜率,都存在且不为时,是定值,这个定值是.【点睛】方法点睛:求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值18、(1)(2)85亿元【解析】(1)利用公式和数据计算即可(2)代入回归直线计算即可【小问1详解】由折线图中数据知,,,因为,所以所以y关于x的线性回归方程为【小问2详解】当时,亿元,此时公司的实际收益的预测值为亿元19、(1)(2)或【解析】(1)以直线方程的点斜式去求圆C在点A处的切线方程;(2)以A为的中点为突破口,设点法去求直线l的方程简单快捷.【小问1详解】圆可化为,圆心因为直线的斜率为,所以圆C在A点处切线斜率为2,所以切线方程为即.【小问2详解】由题意设因为是中点,所以将B代入圆C方程得解得或当时,,此时l方程为当时,,此时l方程为所以l方程为或20、(1)(2)或【解析】(1)由已知计算可得即可得出方程.(2)由已知可得联立方程,结合韦达定理计算即可得出结果.【小问1详解】依题得解得:椭圆的方程为.【小问2详解】由已知动直线与椭圆相交于、,设联立得:解得:,即:或(*)坐标原点总在以为直径的圆外则:,即将(*)代入此式,解得:,即或或21、(1)x2=8y(2)16【解析】小问1:由抛物线的定义可求得动点M的轨迹方程;小问2:可知直线AB的方程为y=x+2,设点A(x1,y1)、B(x2,y2),将直线AB的方程与抛物线的方程联立,求出y1+y2的值,利用抛物线的定义可求得|AB|的值.【小问1详解】由题意点M的轨迹是以F为焦点,直线l为准线的抛物线,所以,则p=4,所以动点M的轨迹方程是x2=8y;【小问2详解】由已知直线AB方程是y=x+2,设A(x1,y1)、B(x2,y2),由得x2﹣8x﹣16=0,,所以x1+x2=8,则y1+y2=x1+x2+4=12,故|AB|=y1+y2+4=1622、(1)(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 国航正式合同范本
- 培训协议劳动合同
- 培训购销合同范本
- 境外加工合同范本
- 墙纸购置合同范本
- 捐赠物品的协议书
- 捷信分期合同范本
- 场地建设合同范本
- 教师帮扶带协议书
- 旅游合同更改协议
- 判决分析报告
- 洁净工作台性能参数校准规范
- 如果历史是一群喵16
- 华为HCIA存储H13-611认证培训考试题库(汇总)
- 社会主义发展史知到章节答案智慧树2023年齐鲁师范学院
- 美国史智慧树知到答案章节测试2023年东北师范大学
- GB/T 15924-2010锡矿石化学分析方法锡量测定
- GB/T 14525-2010波纹金属软管通用技术条件
- GB/T 11343-2008无损检测接触式超声斜射检测方法
- GB/T 1040.3-2006塑料拉伸性能的测定第3部分:薄膜和薄片的试验条件
- 教师晋级专业知识和能力证明材料
评论
0/150
提交评论