版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省仙桃、天门、潜江2026届高二上数学期末教学质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,,2成等差数列,则在平面直角坐标系中,点M(x,y)的轨迹为()A. B.C. D.2.设是公比为的等比数列,则“”是“为递增数列”的A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件3.在平面直角坐标系xOy中,点(0,4)关于直线x-y+1=0的对称点为()A.(-1,2) B.(2,-1)C.(1,3) D.(3,1)4.计算复数:()A. B.C. D.5.直线y=kx+3与圆(x-3)2+(y-2)2=4相交于M,N两点,若,则k的取值范围是()A. B.(-∞,]∪[0,+∞)C. D.6.若某群体中的成员只用现金支付的概率为,既用现金支付也用非现金支付的概率为,则不用现金支付的概率为()A. B.C. D.7.已知,,,则点C到直线AB的距离为()A.3 B.C. D.8.在三棱锥中,,D为上的点,且,则()A. B.C. D.9.已知椭圆,则下列结论正确的是()A.长轴长为2 B.焦距为C.短轴长为 D.离心率为10.已知函数,则()A.函数的极大值为,无极小值 B.函数的极小值为,无极大值C.函数的极大值为0,无极小值 D.函数的极小值为0,无极大值11.倾斜角为45°,在轴上的截距是的直线方程为()A. B.C. D.12.设正方体的棱长为,则点到平面的距离是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知平面的法向量为,平面的法向量为,若,则___________.14.若向量满足,则_________.15.抛物线的焦点到准线的距离等于__________.16.过点与直线平行的直线的方程是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆:的一个焦点与曲线的焦点重合,且离心率为.(1)求椭圆的方程(2)设直线:交椭圆于M,N两点.①若且的面积为,求的值.②若轴上的任意一点到直线与直线(为椭圆的右焦点)的距离相等,求证:直线恒过定点,并求出该定点坐标18.(12分)已知过抛物线的焦点F且斜率为1的直线l交C于A,B两点,且(1)求抛物线C的方程;(2)求以C的准线与x轴的交点D为圆心且与直线l相切的圆的方程19.(12分)已知:在四棱锥中,底面为正方形,侧棱平面,点为中点,.(1)求证:平面平面;(2)求直线与平面所成角大小;(3)求点到平面的距离.20.(12分)已知函数的导函数为,且满足(1)求及的值;(2)求在点处的切线方程21.(12分)已知抛物线的焦点为F,点在C上(1)求p的值及F的坐标;(2)过F且斜率为的直线l与C交于A,B两点(A在第一象限),求22.(10分)已知函数(1)当时,求的单调区间与极值;(2)若不等式在区间上恒成立,求k的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】已知,,2成等差数列,得到,化简得到【详解】已知,,2成等差数列,得到,化简得到可知是焦点在x轴上的抛物线的一支.故答案为A.【点睛】这个题目考查的是对数的运算以及化简公式的应用,也涉及到了轨迹的问题,求点的轨迹,通常是求谁设谁,再根据题干将等量关系转化为代数关系,从而列出方程,化简即可.2、D【解析】当时,不是递增数列;当且时,是递增数列,但是不成立,所以选D.考点:等比数列3、D【解析】设出点(0,4)关于直线的对称点的坐标,根据题意列出方程组,解方程组即可【详解】解:设点(0,4)关于直线x-y+1=0的对称点是(a,b),则,解得:,故选:D4、D【解析】直接利用复数代数形式的乘除运算化简可得结论.【详解】故选:D.5、A【解析】圆心为,半径为2,圆心到直线的距离为,解不等式得k的取值范围考点:直线与圆相交的弦长问题6、A【解析】利用对立事件概率公式可求得所求事件的概率.【详解】由对立事件的概率公式可知,该群体中的成员不用现金支付的概率为.故选:A.7、D【解析】应用空间向量的坐标运算求在上投影长及的模长,再应用勾股定理求点C到直线AB的距离.【详解】因为,,所以设点C到直线AB的距离为d,则故选:D8、B【解析】根据几何关系以及空间向量的线性运算即可解出【详解】因为,所以,即故选:B9、D【解析】根据已知条件求得,由此确定正确答案.【详解】依题意椭圆,所以,所以长轴长为,焦距为,短轴长为,ABC选项错误.离心率为,D选项正确.故选:D10、A【解析】利用导数来求得的极值.【详解】的定义域为,,在递增;在递减,所以的极大值为,没有极小值.故选:A11、B【解析】先由倾斜角为45°,可得其斜率为1,再由轴上的截距是,可求出直线方程【详解】解:因为直线的倾斜角为45°,所以直线的斜率为,因为直线在轴上的截距是,所以所求的直线方程为,即,故选:B12、D【解析】建立空间直角坐标系,根据空间向量所学点到面的距离公式求解即可.【详解】建立如下图所示空间直角坐标系,以为坐标原点,所在直线为轴,所在直线为轴,所在直线为轴.因为正方体的边长为4,所以,,,,,所以,,,设平面的法向量,所以,,即,设,所以,,即,设点到平面的距离为,所以,故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】由,可两平面的法向量也平行,从而可求出,进而可求得答案【详解】因为平面的法向量为,平面的法向量为,,所以∥,所以存实数使,所以,所以,解得,所以,故答案为:214、【解析】根据题目条件,利用模的平方可以得出答案【详解】∵∴∴.故答案为:.15、【解析】先将抛物线方程,转化为标准方程,求得焦点坐标,准线方程即可.【详解】因为抛物线方程是,转化为标准方程得:,所以抛物线开口方向向右,焦点坐标准线方程为:,所以焦点到准线的距离等于.故答案为:【点睛】本题主要考查抛物线的标准方程,还考查了理解辨析的能力,属于基础题.16、【解析】根据给定条件设出所求直线方程,利用待定系数法求解即得.【详解】设与直线平行的直线的方程为,而点在直线上,于是得,解得,所以所求的直线的方程为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)①;②证明见解析,定点的坐标为【解析】(1)由所给条件确定基本量即可.(2)①代入消元,韦达定理整体思想,列出关于的方程从而得解;②由已知可知,得到关于、的一次关系式可得证.【小问1详解】由已知椭圆的右焦点坐标为,,所以,椭圆的方程:【小问2详解】①将与椭圆方程联立得.设,,则,解得,∴,,点到直线的距离为,∴,解得(舍去负值),∴.②设,,将与椭圆方程联立,得,当时,∴,,,若轴上任意一点到直线与的距离均相等,则轴为直线与的夹角的平分线,∴,即,∴.∴,解得.∴.∴直线恒过一定点,该定点的坐标为.18、(1);(2)【解析】(1)首先表示出直线l的方程,再联立直线与抛物线方程,消去,列出韦达定理,再根据焦点弦公式计算可得;(2)由(1)可得,再利用点到直线的距离求出半径,即可求出圆的方程;【详解】解析:(1)由已知得点,∴直线l的方程为,联立去,消去整理得设,,则,,∴抛物线C的方程为(2)由(1)可得,直线l的方程为,∴圆D的半径,∴圆D的方程为【点睛】本题考查抛物线的简单几何性质,属于中档题.19、(1)证明见解析;(2);(3).【解析】(1)以AB所在的直线为x轴,以AD所在的直线为y轴,以AP所在的直线为z轴,建立如图所示的直角坐标系,求出平面PCD的法向量为,平面的法向量为,即得证;(2)设直线与平面所成角为,利用向量法求解;(3)利用向量法求点到平面的距离.【小问1详解】证明:PA平面ABCD,ABCD为正方形,以AB所在的直线为x轴,以AD所在的直线为y轴,以AP所在的直线为z轴,建立如图所示的直角坐标系.由已知可得A(0,0,0),B(1,0,0),C(1,1,0),D(0,1,0),P(0,0,1)M为PD的中点,,所以,,,所以,又PDAM,,平面PCDAM平面PCD.平面PCD的法向量为.设平面的法向量为,,令,则,..平面MAC平面PCD.【小问2详解】解:设直线与平面所成角为,由(1)可得:平面PCD的法向量为,,,即直线与平面所成角大小.【小问3详解】解:,设点到平面的距离为,.点到平面的距离为.20、(1);;(2).【解析】(1)由题可得,进而可得,然后可得,即得;(2)由题可求,,再利用点斜式即得.【小问1详解】∵,∴,,∴,,∴.【小问2详解】∵,,∴,,∴在点处的切线方程为,即.21、(1),(2)4【解析】(1)将M坐标代入方程即可;(2)联立直线l与抛物线方程得到A、B的横坐标,再利用焦半径公式求出即可.【小问1详解】将代入,得,解得,所以【小问2详解】由(1)得抛物线方程为,直线l的方程为,联立消y得,解得或,因为A在第一象限,所以,所以,,所以22、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 急救设备操作与维护护理
- 中职护理护理技术操作规范
- 人工智能助力护理质量提升
- 崇义中学高二下学期第二次月考物理试题
- 2025年并购重组承销补充协议
- 2025年搬家服务合同协议
- 2025年AI煤矿安全监测系统中传感器漂移实时校正
- 破阵子·为陈同甫赋壮词以寄之 课件 2025-2026学年语文九年级下册统编版
- 疫情防控宣传试题及答案
- 2026 年中职酒店管理(酒店基础)试题及答案
- 纺织业账务知识培训课件
- 1688采购合同范本
- 购买铁精粉居间合同范本
- GB/T 29730-2025冷热水用分集水器
- 污水厂安全知识培训
- (2025年标准)存单转让协议书
- 医学科研诚信专项培训
- 电力通信培训课件
- 第五版FMEA控制程序文件编制
- 药物致癌性试验必要性指导原则
- 软骨肉瘤护理查房
评论
0/150
提交评论