版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京王平中学七年级数学压轴题专题一、七年级上册数学压轴题1.如图,O为直线AB上的一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°),的直角顶点放在O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方,将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.(1)几秒后ON与OC重合?(2)如图2,经过t秒后,OM恰好平分∠BOC,求此时t的值.(3)若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,那么经过多长时间OC平分∠MOB?请画出图并说明理由.2.如图一,点在线段上,图中有三条线段、和,若其中一条线段的长度是另外一条线段长度的倍,则称点是线段的“巧点”.(1)填空:线段的中点这条线段的巧点(填“是”或“不是”或“不确定是”)(问题解决)(2)如图二,点和在数轴上表示的数分别是和,点是线段的巧点,求点在数轴上表示的数。(应用拓展)(3)在(2)的条件下,动点从点处,以每秒个单位的速度沿向点匀速运动,同时动点从点出发,以每秒个单位的速度沿向点匀速运动,当其中一点到达中点时,两个点运动同时停止,当、、三点中,其中一点恰好是另外两点为端点的线段的巧点时,直接写出运动时间的所有可能值.3.如图,半径为1个单位的圆片上有一点Q与数轴上的原点重合(提示:圆的周长).(1)把圆片沿数轴向左滚动1周,点Q到达数轴上点A的位置,点A表示的数是________;(2)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:①第几次滚动后,Q点距离原点最近?第几次滚动后,Q点距离原点最远?②当圆片结束运动时,Q点运动的路程共有多少?此时点Q所表示的数是多少?4.已知数轴上,M表示-10,点N在点M的右边,且距M点40个单位长度,点P,点Q是数轴上的动点.(1)直接写出点N所对应的数;(2)若点P从点M出发,以5个单位长度/秒的速度向右运动,同时点Q从点N出发,以3个单位长度/秒向左运动,设点P、Q在数轴上的D点相遇,求点D的表示的数;(3)若点P从点M出发,以5个单位长度/秒的速度向右运动,同时点Q从点N出发,以3个单位长度/秒向右运动,问经过多少秒时,P,Q两点重合?5.“数形结合”是重要的数学思想.请你结合数轴与绝对值的知识回答下列问题:(1)一般地,数轴上表示数m和数n的两点之间的距离等于│m-n│.如果表示数a和-2的两点之间的距离是3,记作│a-(-2)│=3,那么a=.(2)利用绝对值的几何意义,探索│a+4│+│a-2│的最小值为______,若│a+4│+│a-2│=10,则a的值为________.(3)当a=______时,│a+5│+│a-1│+│a-4│的值最小.(4)如图,已知数轴上点A表示的数为4,点B表示的数为1,C是数轴上一点,且AC=8,动点P从点B出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t0)秒.点M是AP的中点,点N是CP的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,求线段MN的长度.6.如图,在数轴上点A表示的数是-3,点B在点A的右侧,且到点A的距离是18;点C在点A与点B之间,且到点B的距离是到点A距离的2倍.(1)点B表示的数是;点C表示的数是;(2)若点P从点A出发,沿数轴以每秒4个单位长度的速度向右匀速运动;同时,点Q从点B出发,沿数轴以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒,当P运动到C点时,点Q与点B的距离是多少?(3)在(2)的条件下,若点P与点C之间的距离表示为PC,点Q与点B之间的距离表示为QB.在运动过程中,是否存在某一时刻使得PC+QB=4?若存在,请求出此时点P表示的数;若不存在,请说明理由.7.如图,图中数轴的单位长度为1,请回答下列问题:(1)如果点A,B表示的数是互为相反数,那么点C表示的数是_______,在此基础上,在数轴上与点C的距离是3个单位长度的点表示的数是__________(2)如果点D,B表示的数是互为相反数,那么点E表示的数是_______(3)在第(1)问的基础上解答:若点P从点A出发,以每秒1个单位长度的速度向点B的方向匀速运动;同时,点Q从点B出发,以每秒2个单位长度的速度向点A的方向匀速运动.则两个点相遇时点P所表示的数是多少?8.已知a是最大的负整数,b是的倒数,c比a小1,且a、b、c分别是A、B、C在数轴上对应的数.若动点P从点A出发沿数轴正方向运动,动点Q同时从点B出发也沿数轴负方向运动,点P的速度是每秒3个单位长度,点Q的速度是每秒1个单位长度.(1)在数轴上标出点A、B、C的位置;(2)运动前P、Q两点间的距离为;运动t秒后,点P,点Q运动的路程分别为和;(3)求运动几秒后,点P与点Q相遇?(4)在数轴上找一点M,使点M到A、B、C三点的距离之和等于11,直接写出所有点M对应的数.9.已知,一个点从数轴上的原点开始.先向左移动6cm到达A点,再从A点向右移动10cm到达B点,点C是线段AB的中点.(1)点C表示的数是;(2)若点A以每秒2cm的速度向左移动,同时C、B两点分别以每秒1cm、4cm的速度向右移动,设移动时间为t秒,①运动t秒时,点C表示的数是(用含有t的代数式表示);②当t=2秒时,CB•AC的值为.③试探索:点A、B、C在运动的过程中,线段CB与AC总有怎样的数量关系?并说明理由.10.如图,两条直线AB、CD相交于点O,且∠AOC=∠AOD,射线OM(与射线OB重合)绕O点逆时针方向旋转,速度为15°/s,射线ON(与射线OD重合)绕O点顺时值方向旋转,速度为12°/s,两射线,同时运动,运动时间为t秒(本题出现的角均指小于平角的角)(1)图中一定有______个直角;当t=2时,∠MON的度数为_____,∠BON的度数为_____,∠MOC的度数为_____;(2)当0<t<12时,若∠AOM=3∠AON-60°,试求出t的值.(3)当0<t<6时,探究的值,在t满足怎样的条件是定值,在t满足怎样的条件不是定值.11.如图1,在内部作射线,,在左侧,且.(1)图1中,若平分平分,则______;(2)如图2,平分,探究与之间的数量关系,并证明;(3)设,过点O作射线,使为的平分线,再作的角平分线,若,画出相应的图形并求的度数(用含m的式子表示).12.如图1,平面内一定点A在直线EF的上方,点O为直线EF上一动点,作射线OA、OP、OA',当点O在直线EF上运动时,始终保持∠EOP=90°、∠AOP=∠A'OP,将射线OA绕点O顺时针旋转60°得到射线OB.(1)如图1,当点O运动到使点A在射线OP的左侧,若OA'平分∠POB,求∠BOF的度数;(2)当点O运动到使点A在射线OP的左侧,且∠AOE=3∠A'OB时,求的值;(3)当点O运动到某一时刻时,∠A'OB=130°,请直接写出∠BOP=_______度.13.如图1,在平面内,已知点O在直线上,射线、均在直线的上方,(),,平分,与互余.(1)若,则________°;(2)当在内部时①若,请在图2中补全图形,求的度数;②判断射线是否平分,并说明理由;(3)若,请直接写出的值.14.如图1,射线OC在的内部,图中共有3个角:、、,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是的“定分线”.(1)一个角的平分线_________这个角的“定分线”;(填“是”或“不是”)(2)如图2,若,且射线PQ是的“定分线”,则________(用含a的代数式表示出所有可能的结果);(3)如图2,若=48°,且射线PQ绕点P从PN位置开始,以每秒8°的速度逆时针旋转,当PQ与PN成90°时停止旋转,旋转的时间为t秒;同时射线PM绕点P以每秒4°的速度逆时针旋转,并与PQ同时停止.当PQ是的“定分线”时,求t的值.15.定义:在同一平两内,有公共端点的三条射线中,一条射线是另两条射线组成夹角的角平分线,我们称这三条射线为“共生三线”.如图为一量角器的平面示意图,为量角器的中心.作射线,,,并将其所对应的量角器外圈刻度分别记为,,.(1)若射线,,为“共生三线”,且为的角平分线.①如图1,,,则______;②当,时,请在图2中作出射线,,,并直接写出的值;③根据①②的经验,得______(用含,的代数式表示).(2)如图3,,.在刻度线所在直线上方区域内,将,,按逆时针方向绕点同时旋转,旋转速度分别为每秒,,,若旋转秒后得到的射线,,为“共生三线”,求的值.16.(阅读理解)射线OC是∠AOB内部的一条射线,若∠COA=∠BOC,则我们称射线OC是射线OA关于∠AOB的伴随线.例如,如图1,若∠AOC=∠BOC,则称射线OC是射线OA关于∠AOB的伴随线;若∠BOD=∠COD,则称射线OD是射线OB关于∠BOC的伴随线.(知识运用)如图2,∠AOB=120°.(1)射线OM是射线OA关于∠AOB的伴随线.则∠AOM=_________°(2)射线ON是射线OB关于∠AOB的伴随线,射线OQ是∠AOB的平分线,则∠NOQ的度数是_________°.(3)射线OC与射线OA重合,并绕点O以每秒2°的速度逆时针旋转,射线OD与射线OB重合,并绕点O以每秒3°的速度顺时针旋转,当射线OD与射线OA重合时,运动停止.①是否存在某个时刻t(秒),使得∠COD的度数是20°,若存在,求出t的值,若不存在,请说明理由.②当t为多少秒时,射线OC、OD、OA中恰好有一条射线是其余两条射线组成的角的一边的伴随线.17.如图1,P点从点A开始以的速度沿的方向移动,Q点从点C开始以的速度沿的方向移动,在直角三角形中,,若,,,如果P,Q同时出发,用t(秒)表示移动时间.(1)如图1,若点P在线段上运动,点Q在线段上运动,当t为何值时,;(2)如图2,点Q在上运动,当t为何值时,三角形的面积等于三角形面积的;(3)如图3,当P点到达C点时,P,Q两点都停止运动,当t为何值时,线段的长度等于线段的长.18.如图①,O是直线上的一点,是直角,平分.(1)若,则____________°,____________°;(2)将图①中的绕顶点O顺时针旋转至图②的位置,其他条件不变,若,求的度数(用含的式子表示);(3)将图①中的绕顶点O顺时针旋转至图③的位置,其他条件不变,直接写出和的度数之间的关系:__________________.(不用证明)19.已知∠AOB,过顶点O作射线OP,若∠BOP=∠AOP,则称射线OP为∠AOB的“好线”,因此∠AOB的“好线”有两条,如图1,射线OP1,OP2都是∠AOB的“好线”.(1)已知射线OP是∠AOB的“好线”,且∠BOP=30°,求∠AOB的度数.(2)如图2,O是直线MN上的一点,OB,OA分别是∠MOP和∠PON的平分线,已知∠MOB=30°,请通过计算说明射线OP是∠AOB的一条“好线”.(3)如图3,已知∠MON=120°,∠NOB=40°.射线OP和OA分别从OM和OB同时出发,绕点O按顺时针方向旋转,OP的速度为每秒12°,OA的速度为每秒4°,当射线OP旋转到ON上时,两条射线同时停止.在旋转过程中,射线OP能否成为∠AOB的“好线”.若不能,请说明理由;若能,请求出符合条件的所有的旋转时间.20.如图,点、和线段都在数轴上,点、、、起始位置所表示的数分别为、0、2、14:线段沿数轴的正方向以每秒2个单位的速度移动,移动时间为秒.(1)当时,的长为______,当秒时,的长为_____.(2)用含有的代数式表示的长为______.(3)当_____秒时,,当______秒时,.(4)若点与线段同时出发沿数轴的正方向移动,点的速度为每秒3个单位,在移动过程中,是否存在某一时刻是的,若存在,请求出的值,若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、七年级上册数学压轴题1.(1)10秒;(2)5秒;(3)秒.【分析】(1)用角的度数除以转动速度即可得;(2)根据∠AOC=30°、OM恰好平分∠BOC知∠BOM=75°,进而可知旋转的度数,结合旋转速度可得时间t;解析:(1)10秒;(2)5秒;(3)秒.【分析】(1)用角的度数除以转动速度即可得;(2)根据∠AOC=30°、OM恰好平分∠BOC知∠BOM=75°,进而可知旋转的度数,结合旋转速度可得时间t;(3)分别根据转动速度关系和OC平分∠MOB画图即可.【详解】(1)∵30÷3=10,∴10秒后ON与OC重合;(2)∵∠AON+∠BOM=90°,∠COM=∠MOB,∵∠AOC=30°,∴∠BOC=2∠COM=150°,∴∠COM=75°,∴∠CON=15°,∴∠AON=∠AOC−∠CON=30°−15°=15°,解得:t=15°÷3°=5秒;(3)如图∵∠AON+∠BOM=90°,∠BOC=∠COM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∴∠COM为(90°−3t),∵∠BOM+∠AON=90°,可得:180°−(30°+6t)=(90°−3t),解得:t=秒.【点睛】此题考查了角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.2.(1)是;(2)10或0或20;(3);t=6;;t=12;;.【分析】(1)根据新定义,结合中点把原线段分成两短段,满足原线段是短线段的2倍关系,进行判断即可;(2)由题意设C点表示的数为解析:(1)是;(2)10或0或20;(3);t=6;;t=12;;.【分析】(1)根据新定义,结合中点把原线段分成两短段,满足原线段是短线段的2倍关系,进行判断即可;(2)由题意设C点表示的数为x,再根据新定义列出合适的方程即可;(3)根据题意先用t的代数式表示出线段AP,AQ,PQ,再根据新定义列出方程,得出合适的解即可求出t的值.【详解】解:(1)因原线段是中点分成的短线段的2倍,所以线段的中点是这条线段的巧点,故答案为:是;(2)设C点表示的数为x,则AC=x+20,BC=40-x,AB=40+20=60,根据“巧点”的定义可知:①当AB=2AC时,有60=2(x+20),解得,x=10;②当BC=2AC时,有40-x=2(x+20),解得,x=0;③当AC=2BC时,有x+20=2(40-x),解得,x=20.综上,C点表示的数为10或0或20;(3)由题意得,(i)、若0≤t≤10时,点P为AQ的“巧点”,有①当AQ=2AP时,60-4t=2×2t,解得,,②当PQ=2AP时,60-6t=2×2t,解得,t=6;③当AP=2PQ时,2t=2(60-6t),解得,;综上,运动时间的所有可能值有;t=6;;(ii)、若10<t≤15时,点Q为AP的“巧点”,有①当AP=2AQ时,2t=2×(60-4t),解得,t=12;②当PQ=2AQ时,6t-60=2×(60-4t),解得,;③当AQ=2PQ时,60-4t=2(6t-60),解得,.综上,运动时间的所有可能值有:t=12;;.故,运动时间的所有可能值有:;t=6;;t=12;;.【点睛】本题是新定义题,是数轴的综合题,主要考查数轴上的点与数的关系,数轴上两点间的距离,一元一次方程的应用,解题的关键是根据新定义列出方程并进行求解.3.(1)-2π;(2)①第4次滚动后Q点离原点最近,第3次滚动后,Q点离原点最远;;②34π;2π.【分析】(1)利用圆的半径以及滚动周数即可得出滚动距离;(2)①利用滚动的方向以及滚动的周数即解析:(1)-2π;(2)①第4次滚动后Q点离原点最近,第3次滚动后,Q点离原点最远;;②34π;2π.【分析】(1)利用圆的半径以及滚动周数即可得出滚动距离;(2)①利用滚动的方向以及滚动的周数即可得出Q点移动距离变化;
②利用绝对值得性质以及有理数的加减运算得出移动距离和Q表示的数即可.【详解】解:(1)把圆片沿数轴向左滚动1周,点Q到达数轴上点A的位置,点A表示的数是-2π;故答案为:-2π;
(2)①第4次滚动后Q点离原点最近,第3次滚动后,Q点离原点最远;
②|﹢2|+|-1|+|-5|+|+4|+|+3|+|-2|=17,
Q点运动的路程共有:17×2π×1=34π;
(+2)+(-1)+(-5)+(+4)+(+3)+(-2)=1,
1×2π=2π,此时点Q所表示的数是2π.【点睛】此题主要考查了数轴的应用以及绝对值的性质和圆的周长公式应用,利用数轴得出对应数是解题关键.4.(1)30;(2)15;(3)20秒【分析】(1)根据数轴上两点之间的距离得出结果;(2)利用时间=路程÷速度和算出相遇时间,再计算出点D表示的数;(3)利用时间=路程÷速度差算出相遇时间即解析:(1)30;(2)15;(3)20秒【分析】(1)根据数轴上两点之间的距离得出结果;(2)利用时间=路程÷速度和算出相遇时间,再计算出点D表示的数;(3)利用时间=路程÷速度差算出相遇时间即可.【详解】解:(1)-10+40=30,∴点N表示的数为30;(2)40÷(3+5)=5秒,-10+5×5=15,∴点D表示的数为15;(3)40÷(5-3)=20,∴经过20秒后,P,Q两点重合.【点睛】本题考查了数轴上两点之间的距离,解题的关键是掌握相遇问题和追击问题之间的数量关系.5.(1)1或-5;(2)6,4或-6;(3)1;(4)不变,线段MN的长度为4【分析】(1)根据两点间的距离公式,到-2点距离是3的点有两个,即可求解;(2)当点a在点-4和点2之间时,的值最小解析:(1)1或-5;(2)6,4或-6;(3)1;(4)不变,线段MN的长度为4【分析】(1)根据两点间的距离公式,到-2点距离是3的点有两个,即可求解;(2)当点a在点-4和点2之间时,的值最小;分两种情况,或,化简绝对值即可求得;(3)根据表示点a到﹣5,1,4三点的距离的和,即可求解;(4)因为点A表示的数为4和AC=8,所以点C表示的数为-4,点P表示的数为(1-6t),则点M表示的数为,点N表示的数为,两数相减取绝对值即可求得.【详解】(1)∵∴a-(-2)=3或a-(-2)=-3解得a=1或-5故答案为:1或-5(2)当点a在点-4和点2之间时,的值最小∵数a的点位于-4与2之间∴a+4>0,a-2<0∴=a+4-a+2=6;当时a+4<0,a-2<0∴===10解得a=-6当时a+4>0,a-2>0∴===10解得a=4故答案为:6,4或-6(3)根据表示一点到-5,1,4三点的距离的和.所以当a=1时,式子的值最小此时的最小值是9故答案为:1(4)∵AC=8∴点C表示的数为-4又∵点P表示的数为(1-6t)∴则点M表示的数为,点N表示的数为∴.∴线段MN的长度不发生变化,其值为4.【点睛】此题考查绝对值的意义、数轴、结合数轴求两点之间的距离,掌握数形结合的思想是解决此题的关键.6.(1)15,3;(2)3;(3)存在,1或【分析】(1)根据两点间的距离公式可求点表示的数;根据线段的倍分关系可求点表示的数;(2)算出点P运动到点C的时间即可求解;(3)分点在点左侧时,点解析:(1)15,3;(2)3;(3)存在,1或【分析】(1)根据两点间的距离公式可求点表示的数;根据线段的倍分关系可求点表示的数;(2)算出点P运动到点C的时间即可求解;(3)分点在点左侧时,点在点右侧时两种情况讨论即可求解.【详解】解:(1)点表示的数是;点表示的数是.故答案为:15,3;(2)当P运动到C点时,s,则,点Q与点B的距离是:;(3)假设存在,当点在点左侧时,,,,,解得.此时点表示的数是1;当点在点右侧时,,,,,解得.此时点表示的数是.综上所述,在运动过程中存在,此时点表示的数为1或.【点睛】考查了数轴、两点间的距离,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.7.(1)-1;-4或2;(2);(3)-1【分析】(1)由的长度结合点,表示的数是互为相反数,即可得出点,表示的数,由且点在点的右边可得出点表示的数,再利用数轴上两点间的距离公式可求出在数轴上与点解析:(1)-1;-4或2;(2);(3)-1【分析】(1)由的长度结合点,表示的数是互为相反数,即可得出点,表示的数,由且点在点的右边可得出点表示的数,再利用数轴上两点间的距离公式可求出在数轴上与点的距离是3个单位长度的点表示的数;(2)由的长度结合点,表示的数是互为相反数,即可得出点表示的数,由且点在点的右边可得出点表示的数;(3)当运动时间为秒时,点表示的数为,点表示的数为,由点,相遇可得出关于的一元一次方程,解之即可得出的值,再将其代入中即可得出两个点相遇时点所表示的数.【详解】解:(1),且点,表示的数是互为相反数,点表示的数为,点表示的数为3,点表示的数为.,,在数轴上与点的距离是3个单位长度的点表示的数是或2.故答案为:;或2.(2),且点,表示的数是互为相反数,点表示的数为,点表示的数为.故答案为:.(3)当运动时间为秒时,点表示的数为,点表示的数为,,,.答:两个点相遇时点所表示的数是.【点睛】本题考查了一元一次方程的应用、数轴以及相反数,解题的关键是:(1)由线段的长度结合点,表示的数互为相反数,找出点表示的数;(2)由线段的长度结合点,表示的数互为相反数,找出点表示的数;(3)找准等量关系,正确列出一元一次方程.8.(1)见解析;(2)6,3t,t;(3)1.5;(4)3或-3.【分析】(1)理解与整数、倒数有关概念,能够正确在数轴上找到所对应的点;(2)根据数轴上两点间的距离的求法,以及路程=速度×时间解析:(1)见解析;(2)6,3t,t;(3)1.5;(4)3或-3.【分析】(1)理解与整数、倒数有关概念,能够正确在数轴上找到所对应的点;(2)根据数轴上两点间的距离的求法,以及路程=速度×时间进行求解;
(3)根据速度和×时间=路程和,列出方程求解即可;
(4)分当M在C点左侧,当M在线段AC上,当M在线段AB上(不含点A),当M在点B的右侧,四种情况列出方程求解.【详解】解:(1)∵a是最大的负整数,∴a=-1,∵b是的倒数,∴b=5,∵c比a小1,
∴c=-2,
如图所示:
(2)运动前P、Q两点之间的距离为5-(-1)=6;运动t秒后,点P,点Q运动的路程分别为3t和t,故答案为:6,3t,t;(3)依题意有3t+t=6,
解得t=1.5.
故运动1.5秒后,点P与点Q相遇;
(4)设点M表示的数为x,使P到A、B、C的距离和等于11,①当M在C点左侧,(-1)-x+5-x+(-2)-x=11.解得x=-3,即M对应的数是-3.②当M在线段AC上,x-(-2)-1-x+5-x=11,解得:x=-5(舍);③当M在线段AB上(不含点A),x-(-1)+5-x+x-(-2)=11,解得x=3,即M对应的数是3.④当M在点B的右侧,x-(-1)+x-5+x-(-2)=11,解得:x=(舍),综上所述,点M表示的数是3或-3.【点睛】此题主要考查了一元一次方程的应用,与数轴有关计算问题,能够正确表示数轴上两点间的距离.9.(1)-1;(2)①﹣1+t;②121;③线段CB与AC相等,理由详见解析.【分析】(1)依据条件即可得到点A表示﹣6,点B表示﹣6+10=4,再根据点C是线段AB的中点,即可得出点C表示的数;解析:(1)-1;(2)①﹣1+t;②121;③线段CB与AC相等,理由详见解析.【分析】(1)依据条件即可得到点A表示﹣6,点B表示﹣6+10=4,再根据点C是线段AB的中点,即可得出点C表示的数;(2)依据点C表示的数为﹣1,点以每秒1cm的速度向右移动,即可得到运动t秒时,点C表示的数是﹣1+t;②依据点A表示的数为﹣6﹣2×2=﹣10,点B表示的数为4+4×2=12,点C表示的数是﹣1+2=1,即可得到CB•AC的值;③依据点A表示的数为﹣6﹣2t,点B表示的数为4+4t,点C表示的数是﹣1+t,即可得到点A、B、C在运动的过程中,线段CB与AC相等.【详解】解:(1)∵一个点从数轴上的原点开始,先向左移动6cm到达A点,再从A点向右移动10cm到达B点,∴点A表示﹣6,点B表示﹣6+10=4,又∵点C是线段AB的中点,∴点C表示的数为=﹣1,故答案为:﹣1.(2)①∵点C表示的数为﹣1,点以每秒1cm的速度向右移动,∴运动t秒时,点C表示的数是﹣1+t,故答案为:﹣1+t;②由题可得,当t=2秒时,点A表示的数为﹣6﹣2×2=﹣10,点B表示的数为4+4×2=12,点C表示的数是﹣1+2=1,∴当t=2秒时,AC=11,BC=11,∴CB•AC=121,故答案为:121;③点A、B、C在运动的过程中,线段CB与AC相等.理由:由题可得,点A表示的数为﹣6﹣2t,点B表示的数为4+4t,点C表示的数是﹣1+t,∴BC=(4+4t)﹣(﹣1+t)=5+3t,AC=(﹣1+t)﹣(﹣6﹣2t)=5+3t,∴点A、B、C在运动的过程中,线段CB与AC相等.【点睛】本题考查数轴上动点问题,整式的加减,与线段有关的动点问题.(1)理解数轴上线段的中点表示的数是两个端点所表示的数的和除以2;(2)掌握数轴上两点之间的距离求解方法是解决问题的关键,数轴上两点之间对应的距离等于它们所表示的数差的绝对值.10.(1)4;144°,114°,60°;(2)s或10s;(3),当0<t<时,的值不是定值,当<t<6时,的值是3【分析】(1)根据两条直线AB,CD相交于点O,∠AOC=∠AOD,可得图中一定解析:(1)4;144°,114°,60°;(2)s或10s;(3),当0<t<时,的值不是定值,当<t<6时,的值是3【分析】(1)根据两条直线AB,CD相交于点O,∠AOC=∠AOD,可得图中一定有4个直角;当t=2时,根据射线OM,ON的位置,可得∠MON的度数,∠BON的度数以及∠MOC的度数;(2)分两种情况进行讨论:当0<t≤7.5时,当7.5<t<12时,分别根据∠AOM=3∠AON-60°,列出方程式进行求解,即可得到t的值;(3)先判断当∠MON为平角时t的值,再以此分两种情况讨论:当0<t<时,当<t<6时,分别计算的值,根据结果作出判断即可.【详解】解:(1)如图所示,∵两条直线AB,CD相交于点O,∠AOC=∠AOD,∴∠AOC=∠AOD=90°,∴∠BOC=∠BOD=90°,∴图中一定有4个直角;当t=2时,∠BOM=30°,∠NON=24°,∴∠MON=30°+90°+24°=144°,∠BON=90°+24°=114°,∠MOC=90°-30°=60°;故答案为:4;144°,114°,60°;(2)当ON与OA重合时,t=90÷12=7.5(s),当OM与OA重合时,t=180°÷15=12(s),如图所示,当0<t≤7.5时,∠AON=90°-12t°,∠AOM=180°-15t°,由∠AOM=3∠AON-60°,可得180°-15t°=3(90°-12t°)-60°,解得t=;如图所示,当7.5<t<12时,∠AON=12t°-90°,∠AOM=180°-15t°,由∠AOM=3∠AON-60°,可得180°-15t°=3(12t°-90°)-60°,解得t=10;综上所述,当∠AOM=3∠AON-60°时,t的值为s或10s;(3)当∠MON=180°时,∠BOM+∠BOD+∠DON=180°,∴15t°+90°+12t°=180°,解得t=,①如图所示,当0<t<时,∠COM=90°-15t°,∠BON=90°+12t°,∠MON=∠BOM+∠BOD+∠DON=15t°+90°+12t°,∴==(不是定值),②如图所示,当<t<6时,∠COM=90°-15t°,∠BON=90°+12t°,∠MON=360°-(∠BOM+∠BOD+∠DON)=360°-(15t°+90°+12t°)=270°-27t°,∴===3(定值),综上所述,当0<t<时,的值不是定值,当<t<6时,的值是3.【点睛】本题属于角的计算综合题,主要考查了角的和差关系的运用,解决问题的关键是将相关的角用含t的代数式表示出来,并根据题意列出方程进行求解,以及进行分类讨论,解题时注意方程思想和分类思想的灵活运用.11.(1)120;(2),见解析;(3)见解析,或【分析】(1)根据角平分线的性质得到,再结合已知条件即可得出答案;(2)根据角平分线的性质与已知条件进行角之间的加减即可证明出结论;(3)根据角解析:(1)120;(2),见解析;(3)见解析,或【分析】(1)根据角平分线的性质得到,再结合已知条件即可得出答案;(2)根据角平分线的性质与已知条件进行角之间的加减即可证明出结论;(3)根据角平分线的性质结合已知条件进行角度之间的加减运算,分类讨论得出结论即可.【详解】解:(1)∵,,∴,∴,∵平分平分,∴,∴,∴,故答案为:120;(2).证明:∵平分,∴,∵,∴.∴.∵,∴.∵,∴,∴;(3)如图1,当在的左侧时,∵平分,∴,,∴,∵,,∴,∴,∴.∵为的平分线,∴.∴;如图2,当在的右侧时,∵平分,∴,∵,∴,∵,,∴,∴,∴.∵为的平分线,.综上所述,的度数为或.【点睛】本题主要考查了角平分线的性质与角度之间的加减运算,关键在于根据图形分析出各角之间的数量关系.12.(1)50°;(2)或6;(3)95或145.【分析】(1)根据OA′平分∠POB,设∠POA′=∠A′OB=x,根据题意列方程即可求解;(2)分射线OB在∠POA′内部和射线OB在∠POA解析:(1)50°;(2)或6;(3)95或145.【分析】(1)根据OA′平分∠POB,设∠POA′=∠A′OB=x,根据题意列方程即可求解;(2)分射线OB在∠POA′内部和射线OB在∠POA′外部两种情况分类讨论,分别设∠A′OB=x,∠AOE=3x,分别求出x的值,即可求值;(3)根据题意分类讨论,根据周角定义分别求出∠A'OA,再根据∠AOP=∠A'OP,结合已知即可求解.【详解】解:(1)∵OA′平分∠POB,∴设∠POA′=∠A′OB=x,∵∠AOP=∠A′OP=x,∵∠AOB=60°,∴x+2x=60°,∴x=20°,∴∠BOF=90°-2x=50°;(2)①当点O运动到使点A在射线OP的左侧,射线OB在∠POA′内部时,∵∠AOE=3∠A′OB,∴设∠A′OB=x,∠AOE=3x,∵OP⊥EF,∴∠AOF=180°-3x,∠AOP=90°-3x,∴,∵∠AOP=∠A′OP,∴∠AOP=∠A′OP=,∴OP⊥EF,∴+3x=90°,∴x=,∴;②当点O运动到使A在射线OP的左侧,但是射线OB在∠POA′外部时,∵∠AOE=3∠A′OB,设∠A′OB=x,∠AOE=3x,∴∠AOP=∠A′OP=,∴OP⊥EF,∴3x+=90°,∴x=24°,∴;综上所述:的值是或6;(3)∠BOP=95°或145°;①如图3,当∠A'OB=130°时,由图可得:∠A'OA=∠A'OB-∠AOB=130°-60°=70°,又∵∠AOP=∠A'OP,∴∠AOP=35°,∴∠BOP=60°+35°=95°;②如图4,当∠A'OB=130°时,由图可得∠A'OA=360°-130°-60°=170°,又∵∠AOP=∠A'OP,∴∠AOP=85°,∴∠BOP=60°+85°=145°;综上所述:∠BOP的度数为95°或145°.【点睛】本题考查了角平分线的的定义和角的和差计算,根据题意正确画出图形进行分类讨论是解题关键.13.(1);(2)①补全图形见解析;;②OF平分,理由见解析;(3)或.【分析】(1)根据∠AOE+∠BOE=180°,∠AOE:∠BOE=1:5,再根据∠AOE=∠AOC+∠COE即可求解;解析:(1);(2)①补全图形见解析;;②OF平分,理由见解析;(3)或.【分析】(1)根据∠AOE+∠BOE=180°,∠AOE:∠BOE=1:5,再根据∠AOE=∠AOC+∠COE即可求解;(2)①根据题意即可补全图形;根据∠DOF与∠AOC互余,可求出∠DOF,又因为OD平分∠COE,可求得∠DOE,根据∠EOF=∠DOF-∠DOE即可求解;②根据∠DOF=-∠AOC,∠BOF=,即可求证;(3)分两种情况进行计算:①OF在∠BOC内部,根据∠EOF=4∠AOC=,OD平分∠COE,∠COE=,可得∠DOE=∠COD=,继而可得∠DOF=∠DOE+∠EOF=+==∠BOF,根据∠AOC+∠COD+∠DOF+∠BOF=180°即可求出的值;②OF在∠BOC外部,根据∠EOF=∠COE+∠AOC+∠AOF,可得到∠AOF=,又因为∠DOF与∠AOC互余,可得到∠DOC+∠COA+∠AOF+∠AOC=90°,继而可求出的值.【详解】解:(1)∵AB为直线,∴∠AOE+∠BOE=180°,又∵∠AOE:∠BOE=1:5,∴∠AOE=,∵∠AOC=,∠COE=,∴∠AOE=∠AOC+∠COE=+==30°,解得:;(2)①补全的图形见下图:∵∠DOF与∠AOC互余,∴∠DOF=-∠AOC=70°,∵OD平分∠COE,∠COE=,∴∠DOE==20°,∴∠EOF=∠DOF-∠DOE=;②OF平分∠BOD,理由如下:由题意得:∠DOF=-∠AOC=-,∠BOF===,∴∠DOF=∠BOF,∴OF平分∠BOD;(3)分两种情况:①当OF在∠BOC内部时,如下图所示:∵∠EOF=4∠AOC=,OD平分∠COE,∠COE=,∴∠DOE=∠COD=,∴∠DOF=∠DOE+∠EOF=+==∠BOF,∴∠AOC+∠COD+∠DOF+∠BOF=180°,即,解得:;②当OF在∠BOC外部时,如下图所示:∵OD平分∠COE,∠COE=,∴∠DOE=∠COD=,∵∠EOF=4∠AOC=,∴∠EOF=∠COE+∠AOC+∠AOF=++∠AOF=,∴∠AOF=,∵∠DOF与∠AOC互余,∴∠DOF+∠AOC=90°,即∠DOC+∠COA+∠AOF+∠AOC=90°,∴+++=90°,解得:综上所述,的值为或.【点睛】本题考查角平分线、余角补角、尺规作图等知识,综合运用相关知识点是解题的关键.14.(1)是;(2);(3)t=2.4,6,4【分析】(1)根据“定分线”定义即可求解;(2)分3种情况,根据“定分线定义”即可求解;(3)分3种情况,根据“定分线定义”列出方程求解即可.【详解析:(1)是;(2);(3)t=2.4,6,4【分析】(1)根据“定分线”定义即可求解;(2)分3种情况,根据“定分线定义”即可求解;(3)分3种情况,根据“定分线定义”列出方程求解即可.【详解】解:(1)当OC是角∠AOB的平分线时,∵∠AOB=2∠AOC,∴一个角的平分线是这个角的“定分线”;故答案为:是;(2)∵∠MPN=分三种情况①∵射线PQ是的“定分线”,∴=2=,∴=,②∵射线PQ是的“定分线”,∴=2,∵∠QPN+∠QPM=,∴3=,∴=,③∵射线PQ是的“定分线”,∴2=,∵∠QPN+∠QPM=,∴3∠QPN=,∴∠QPN=,∴∠QPM=,∴∠MPQ=或或;故答案为:或或;(3)依题意有三种情况:①∠NPQ=∠NPM,由∠NPQ=8t,∠NPM=4t+48,∴8t=(4t+48),解得t=2.4(秒);②∠NPQ=∠NPM由∠NPQ=8t,∠NPM=4t+48,∴8t=(4t+48),解得t=4(秒);③∠NPQ=∠NPM由∠NPQ=8t,∠NPM=4t+48,∴8t=(4t+45),解得:t=6(秒),故t为2.4秒或4秒或6秒时,PQ是∠MPN的“定分线”.【点睛】本题考查了一元一次方程的几何应用,“定分线”定义,学生的阅读理解能力及知识的迁移能力.理解“定分线”的定义并分情况讨论是解题的关键.15.(1)①40;②画图见解析,95;③;(2)或12或30【分析】(1)①根据“共生三线”的定义直接计算;②分别画出OA,OB,再根据OC为∠AOB的平分线画出OC;③根据①②的经验直接可得结解析:(1)①40;②画图见解析,95;③;(2)或12或30【分析】(1)①根据“共生三线”的定义直接计算;②分别画出OA,OB,再根据OC为∠AOB的平分线画出OC;③根据①②的经验直接可得结论;(2)分OB′为∠A′OC′的平分线,OA′为∠B′OC′的平分线,OC′为∠A′OB′的平分线三种情况,列出方程求解.【详解】解:(1)①∵OA,OB,OC为“共生三线”,OC平分∠AOB,∴∠AOB=b°-a°=80°,∴m°=∠AOB=×80°=40°,故m=40;②如图,∵,,∴m=(a+b)÷2=95;③根据①②的经验可得:m=;(2)∵a=0,b=m=60,∴t秒后,a=12t,b=60+6t,m=60+8t,当OB′为∠A′OC′的平分线时,b=,即60+6t=(12t+60+8t),解得:t=;当OA′为∠B′OC′的平分线时,a=,即12t=(60+6t+60+8t),解得:t=12;当OC′为∠A′OB′的平分线时,m=,即60+8t=(12t+60+6t),解得:t=30;综上:t的值为或12或30.【点睛】本题主要考查了角平分线的定义的运用,一元一次方程,解题的关键是能够根据“共生三线”的定义分类讨论,列出方程.16.(1);(2);(3)①当t=20秒或28秒时,∠COD的度数是20°;②当t为或或或秒时,射线OC、OD、OA中恰好有一条射线是其余两条射线组成的角的一边的伴随线.【分析】(1)根据伴随线定义解析:(1);(2);(3)①当t=20秒或28秒时,∠COD的度数是20°;②当t为或或或秒时,射线OC、OD、OA中恰好有一条射线是其余两条射线组成的角的一边的伴随线.【分析】(1)根据伴随线定义即可求解;(2)根据伴随线定义结合角平分线的定义即可求解;(3)①利用分类讨论思想,分相遇之前和之后进行列式计算即可;②利用分类讨论思想,分相遇之前和之后四个图形进行计算即可.【详解】(1)根据伴随线定义得,∴;故答案为:;(2)如图,根据伴随线定义得,即,∵射线OQ是∠AOB的平分线,∴,∴;故答案为:;(2)射线OD与OA重合时,(秒),①当∠COD的度数是20°时,有两种可能:若在相遇之前,则120-3t-2t=20,∴t=20;若在相遇之后,则3t+2t-120=20,∴t=28;所以,综上所述,当t=20秒或28秒时,∠COD的度数是20°;②相遇之前,射线OC是射线OA关于∠AOD的伴随线,则∠AOC=∠COD,即,解得:(秒);相遇之前,射线OC是射线OD关于∠AOD的伴随线,则∠COD=∠AOC,即,解得:(秒);相遇之后,射线OD是射线OA关于∠AOC的伴随线,则∠AOD=∠COD,即,解得:(秒);相遇之后,射线OD是射线OC关于∠AOC的伴随线,则∠COD=∠AOD,即,解得:(秒);综上,当t为或或或秒时,射线OC、OD、OA中恰好有一条射线是其余两条射线组成的角的一边的伴随线.【点睛】本题考查了一元一次方程的应用,角平分线的性质,解决本题的关键是理解新定义,找到等量关系列出方程,难点是利用分类讨论思想解决问题.17.(1)4,(2)9,(3)或4【分析】(1)当P在线段AB上运动,Q在线段CA上运动时,设CQ=t,AP=2t,则AQ=12﹣t,由AQ=AP,可得方程12﹣t=2t,解方程即可.(2)当Q在解析:(1)4,(2)9,(3)或4【分析】(1)当P在线段AB上运动,Q在线段CA上运动时,设CQ=t,AP=2t,则AQ=12﹣t,由AQ=AP,可得方程12﹣t=2t,解方程即可.(2)当Q在线段CA上时,设CQ=t,则AQ=12﹣t,根据三角形QAB的面积等于三角形ABC面积的,列出方程即可解决问题.(3)分三种情形讨论即可①当0<t≤8时,P在线段AB上运动,Q在线段CA上运动.②当8<t≤12时,Q在线段CA上运动,P在线段BC上运动.③当t>12时,Q在线段AB上运动,P在线段BC上运动时,分别列出方程求解即可.【详解】解:(1)当P在线段AB上运动,Q在线段CA上运动时,设CQ=t,AP=2t,则AQ=12﹣t,∵AQ=AP,∴12﹣t=2t,∴t=4.∴t=4时,AQ=AP.(2)当Q在线段CA上时,设CQ=t,则AQ=12﹣t,∵三角形QAB的面积等于三角形ABC面积的,∴•AB•AQ=וAB•AC,∴×16×(12﹣t)=×16×12,解得t=9.∴t=9时,三角形QAB的面积等于三角形ABC面积的.(3)由题意可知,Q在线段CA上运动的时间为12秒,P在线段AB上运动时间为8秒,①当0<t≤8时,P在线段AB上运动,Q在线段CA上运动,设CQ=t,AP=2t,则AQ=12﹣t,BP=16﹣2t,∵AQ=BP,∴12﹣t=16﹣2t,解得t=4.②当8<t≤12时,Q在线段CA上运动,P在线段BC上运动,设CQ=t,则AQ=12﹣t,BP=2t﹣16,∵AQ=BP,∴12﹣t=2t﹣16,解得t=.③当t>12时,Q在线段AB上运动,P在线段BC上运动时,∵AQ=t﹣12,BP=2t﹣16,∵AQ=BP,∴t﹣12=2t﹣16,解得t=4(舍去),综上所述,t=或4时,AQ=BP.【点睛】本题考查线段和差、一元一次方程等知识,解题的关键是理解题意,学会用方程的思想思考问题,属于中考常考题型.18.(1)60°,15°;(2)∠DOE;(3)∠AOC=360°-2∠DOE.【分析】(1)由已知可求出∠BOC=180°-∠AOC=150°,∠BOD=180°-∠COD-∠AOC=60°,再由解析:(1)60°,15°;(2)∠DOE;(3)∠AOC=360°-2∠DOE.【分析】(1)由已知可求出∠BOC=180°-∠AOC=150°,∠BOD=180°-∠COD-∠AOC=60°,再由∠COD是直角,OE平分∠BOC利用角的和差即可求出∠DOE的度数;(2)由∠AOC的度数可以求得∠BOC的度数,由OE平分∠BOC,可以求得∠COE的度数,又由∠DOC=90°可以求得∠DOE的度数;(3)由∠COD是直角,OE平分∠BOC,∠BOC+∠AOC=180°,可以建立各个角之间的关系,从而可以得到∠AOC和∠DOE的度数之间的关系.【详解】解:(1)∵,∴∠BOC=180°-∠AOC=150°,∵OE平分∠BOC,∴∠COE=∠BOC=×150°=75°,又∵∠CO
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 会计师事务所行业成员退出制度研究:基于CD事务所的案例研究
- VR虚拟现实设备采购协议2025年科技版
- 2025年海南省公需课学习-药品网络销售监督管理办法
- 2025年营养周饮食健康知识竞赛题库及答案(共240题)
- 2025年八大特殊作业安全试题库及答案(共50题)
- 2025年普法题库搜题方法及答案
- 2025年宝安期末调研试卷及答案
- 公司食堂出租合同范本
- 2025年村镇街道面试真题及答案
- 紫菜养殖转让合同范本
- 货车挂靠租赁协议书
- 行车搬迁改造协议书
- 3D打印与机器人融合的个体化骨科精准手术方案
- 绵竹市2025年公开招聘社区专职工作者(91人)考试笔试备考试题及答案解析
- 2026审计署京内直属事业单位招聘国内高校应届毕业生20人笔试考试参考试题及答案解析
- 长期照护师安全理论模拟考核试卷含答案
- 2025年行政事业单位资产管理自检自查报告
- 基于VAR的证券投资组合优化模型毕业论文
- 2025年天津红日药业股份有限公司招聘考试笔试参考题库附答案解析
- 卓有成效的管理者要事优先
- 生产车间安全管理检查表及整改措施
评论
0/150
提交评论