版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
初中苏教七年级下册期末数学重点初中试卷解析一、选择题1.下列各式中,计算结果为a6的是()A.a2•a3 B.a3+a3 C.a12÷a2 D.(a2)32.如图,∠B的同位角是()A.∠1 B.∠2 C.∠3 D.∠43.方程组的解是A. B. C. D.4.下列等式从左到右的变形,属于因式分解的是()A. B.C. D.5.已知关于x的不等式组有且只有三个整数解,则a的取值范围是()A.-2≤a≤-1 B.-2≤a≤-1 C.-2<a≤-1 D.-2<a<-16.下列命题:(1)如果,,那么;(2)两直线平行,同旁内角相等;(3)对顶角相等;(4)等角的余角相等.其中,真命题的个数是()A.1 B.2 C.3 D.47.(阅读理解)计算:,,,,观察算式,我们发现两位数乘11的速算方法:头尾一拉,中间相加,满十进一.(拓展应用)已知一个两位数,十位上的数字是,个位上的数字是,这个两位数乘11,计算结果中十位上的数字可表示为()A.或 B.或 C. D.或8.如图,把沿对折.若,,则的度数为()A. B. C. D.二、填空题9.计算:2x•(﹣3xy)=___.10.命题“如果a=b,那么|a|=|b|”的逆命题是____(填“真命题“或“假命题”).11.如图,小明从点出发,沿直线前进10米后向左转,再沿直线前进10米后,又向左转,…,照这样走下去,他第一次回到出发地点时一共走了______米.12.若a+b=4,a﹣b=1,则(a+1)2﹣(b﹣1)2的值为_____.13.若是方程组的解,则a与c的关系是________.14.如图,在四边形中,,,,面积为18,的垂直平分线分别交,于点,,若点和点分别是线段和边上的动点,则的最小值为______.15.若某个正多边形的每一个外角都等于其相邻内角的,则这个正多边形的边数是_____.16.如图所示,分别以边形的顶点为圆心,以2cm为半径画圆,则图中阴影部分的面积之和为__________.17.计算:(1)2-2+(3721﹣4568)0(2)(-x2)3+(-3x2)2•x218.因式分解:(1)2(x+2)2+8(x+2)+8;(2)﹣2m4+32m².19.解方程组:(1);(2).20.解下列不等式或不等式组:(1)(2)三、解答题21.如图,已知,B.(1)试判断DE与BC的位置关系,并说明理由(2)若DE平分,,求的度数.22.某商场打算在年前用30000元购进一批彩灯进行销售,由于进货厂家促销,实际可以以8折的价格购进这批彩灯,结果可以比计划多购进了100盏彩灯.(1)该商场购进这种彩灯的实际进价为多少元?(2)该商场打算在实际进价的基础上,每盏灯加价50%的销售,但可能会面临滞销,因此将有20%的彩灯需要降价,以5折出售,该商场要想获利不低于15000元,应至少在购进这种彩灯多少盏?23.小红用110根长短相同的小木棍按照如图所示的方式,连续摆正方形或六边形,要求相邻的图形只有一条公共边.(1)小红首先用根小木棍摆出了个小正方形,请你用等式表示之间的关系:;(2)小红用剩下的小木棍摆出了一些六边形,且没有木棍剩余.已知他摆出的正方形比六边形多4个,请你求出摆放的正方形和六边形各多少个?(3)小红重新用50根小木棍,摆出了排,共个小正方形.其中每排至少含有1个小正方形,每排含有的小正方形的个数可以不同.请你用等式表示之间的关系,并写出所有可能的取值.24.在中,,,点在直线上运动(不与点、重合),点在射线上运动,且,设.(1)如图①,当点在边上,且时,则__________,__________;(2)如图②,当点运动到点的左侧时,其他条件不变,请猜想和的数量关系,并说明理由;(3)当点运动到点的右侧时,其他条件不变,和还满足(2)中的数量关系吗?请在图③中画出图形,并给予证明.(画图痕迹用黑色签字笔加粗加黑)25.直线与直线垂直相交于O,点A在射线上运动,点B在射线上运动.(1)如图1,已知、分别是和角的平分线,点A、B在运动的过程中,的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值;(2)如图2,延长至D,己知、的角平分线与的角平分线及其延长线相交于E、F.①求的度数.②在中,如果有一个角是另一个角的3倍,试求的度数.【参考答案】一、选择题1.D解析:D【分析】分别根据同底数幂的乘法法则,合并同类项法则,同底数幂的除法法则以及幂的乘方运算法则逐一判断即可.【详解】解:A、a2•a3=a5,故本选项不合题意;B、a3+a3=2a3,故本选项不合题意;C、a12÷a2=a10,故本选项不合题意;D、(a2)3=a6,故本选项符合题意;故选:D.【点睛】本题考查了合并同类项,同底数幂的乘除法以及幂的乘方,熟记相关运算法则是解答本题的关键.2.C解析:C【分析】同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角.【详解】解:∠B与∠3是DE、BC被AB所截而成的同位角,故选:C.【点睛】本题主要考查了同位角,解答此类题确定三线八角是关键,可直接从截线入手.同位角的边构成F形,内错角的边构成Z形,同旁内角的边构成U形.3.D解析:D【分析】利用代入消元法求解即可.【详解】解:,将①代入②中得:3x+2x=15,合并同类项得:5x=15,解得:x=3,代入①中,解得:y=6,∴方程组的解为:,故选D.【点睛】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.4.B解析:B【详解】【考点】因式分解的概念.【分析】根据因式分解的概念判断,即等式左边是多项式,右边是几个整式的积的形式.【解答】解:A、等式左边是几个整式的积的形式,右边是多项式,是整式的乘法,不是因式分解,故本选项错误;B、等式左边是多项式,右边是几个整式的积的形式,是因式分解,故本选项正确;C、左边是几个整式的积的形式,右边是多项式,是整式的乘法,不是因式分解,故本选项错误;D、左边是多项式,右边不是几个整式的积的形式,不是因式分解,故本选项错误.故选B5.C解析:C【分析】先由不等式组解得x的范围,然后结合不等式组有且只有三个整数解得到a的取值范围.【详解】解:由不等式组得,又不等式组有且只有三个整数解,且,∴不等式组的整数解应该是3、4、5三个数,又,∴,即,故选C.【点睛】本题考查不等式的解集,根据不等式组有且只有三个整数解3、4、5及确定是解题关键.6.C解析:C【分析】利用不等式的性质、平行线的性质、对顶角的性质及余角的定义分别判断后即可确定正确的选项.【详解】解:(1)如果a<0,b<0,那么a+b<0,正确,是真命题;(2)两直线平行,同旁内角互补,故错误,是假命题;(3)对顶角相等,正确,是真命题;(4)等角的余角相等,正确,是真命题,真命题有3个.故选:C.【点睛】本题考查命题与定理的知识,解题的关键是了解不等式的性质、平行线的性质、对顶角的性质及余角的定义等知识.7.D解析:D【分析】根据题目中的速算法可以解答本题.【详解】由题意可得,某一个两位数十位数字是a,个位数字是b,将这个两位数乘11,得到一个三位数,则根据上述的方法可得:当a+b<10时,该三位数百位数字是a,十位数字是a+b,个位数字是b,当a+b≥10时,结果的百位数字是a+1,十位数字是a+b-10,个位数字是b.所以计算结果中十位上的数字可表示为:a+b或a+b−10.故选D.【点睛】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.8.A解析:A【分析】首先根据三角形内角和定理可得∠AEF+∠AFE=120°,再根据邻补角的性质可得∠FEB+∠EFC=360°-120°=240°,再根据由折叠可得:∠B′EF+∠EFC′=∠FEB+∠EFC=240°,然后计算出∠1+∠2的度数,进而得到答案.【详解】解:∵∠A=60°,∴∠AEF+∠AFE=180°-60°=120°,∴∠FEB+∠EFC=360°-120°=240°,∵由折叠可得:∠B′EF+∠EFC′=∠FEB+∠EFC=240°,∴∠1+∠2=240°-120°=120°,∵∠1=95°,∴∠2=120°-95°=25°,故选:A.【点睛】本题考查了折叠的性质:翻折变换(折叠问题)实质上就是轴对称变换;折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.二、填空题9.-6x2y【分析】根据单项式乘单项式法则,即可求解.【详解】解:2x•(﹣3xy)=-6x2y,故答案是:-6x2y.【点睛】本题主要考查单项式乘单项式,掌握单项式乘单项式法则是解题的关键.10.假命题【分析】直接利用绝对值的性质进而判断命题的正确性.【详解】解:如果a=b,那么|a|=|b|的逆命题是:如果|a|=|b|,则a=b是假命题.故答案为:假命题.【点睛】此题主要考查了命题与定理,正确写出逆命题是解题关键.11.A解析:90【分析】利用多边形的外角和得出小明回到出发地A点时左转的次数,即可解决问题.【详解】解:由题意可知,小明第一次回到出发地A点时,他一共转了360°,且每次都是向左转40°,所以共转了9次,一次沿直线前进10米,9次就前进90米.故答案为:90.【点睛】本题考查根据多边形的外角和解决实际问题,注意多边形的外角和是360°.12.12【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【详解】解:∵a+b=4,a﹣b=1,∴(a+1)2﹣(b﹣1)2=(a+1+b﹣1)(a+1﹣b+1)=(a+b)(a﹣b+2)=4×(1+2)=12.故答案是:12.【点睛】本题考查了公式法分解因式,属于基础题,熟练掌握平方差公式的结构特征即可解答.13.9a-4c=23【分析】把解代入方程组中,得关于a、b、c的方程组,消去b即得a与c的关系式.【详解】把代入方程组中,得:,得:9a-4c=23故答案为:9a-4c=23【点睛】本题考查了二元一次方程组的解以及消元法的应用,关键是应用消元法消去b.14.A解析:6【分析】连接AQ,过点D作于H.利用三角形的面积公式求出DH,由题意得:,求出AQ的最小值,AQ最小值是与DH相等,也就是时,根据面积公式求出DH的长度即可得到结论.【详解】解:连接AQ,过点D作于H.∵面积为18,BC=6,∴,∴,∵MN垂直平分线段AB,∴,∴,∴当AQ的值最小时,的值最小,根据垂线段最短可知,当时,AQ的值最小,∵,∴AQ=DH=6,∴的最小值为6.故答案为:6.【点睛】本题考查轴对称最短问题,平行线的性质,三角形的面积,线段的垂直平分线的性质等知识,把最短问题转化为垂线段最短是解题关键.15.8【分析】根据每个外角都等于相邻内角的,并且外角与相邻的内角互补,就可求出外角的度数;根据外角度数就可求得边数.【详解】解:设外角是x度,则相邻的内角是3x度.根据题意得:x+3x=180解析:8【分析】根据每个外角都等于相邻内角的,并且外角与相邻的内角互补,就可求出外角的度数;根据外角度数就可求得边数.【详解】解:设外角是x度,则相邻的内角是3x度.根据题意得:x+3x=180,解得x=45.则多边形的边数是:360°÷45°=8.故答案为:8.【点睛】本题考查了多边形的内角和与外角和的知识.此题难度不大,注意掌握方程思想的应用是解题关键.16.4π【详解】∵多边形的外角和为360°,∴=π×22=4π(cm2).故答案为:4π.解析:4π【详解】∵多边形的外角和为360°,∴=π×22=4π(cm2).故答案为:4π.17.(1);(2)8x6【分析】(1)先算负整数指数幂和零指数幂,再算加法,即可求解;(2)先算幂的乘方和积的乘方,进而即可求解.【详解】解:(1)原式=+1=;(2)原式=-x6+9x4解析:(1);(2)8x6【分析】(1)先算负整数指数幂和零指数幂,再算加法,即可求解;(2)先算幂的乘方和积的乘方,进而即可求解.【详解】解:(1)原式=+1=;(2)原式=-x6+9x4•x2=-x6+9x6=8x6.【点睛】本题主要考查实数的混合运算以及整式的运算,掌握负整数指数幂和零指数幂的性质以及幂的乘方和积的乘方法则,是解题的关键.18.(1)2(x+4)2;(2)﹣2m2(m+4)(m﹣4)【分析】(1)直接提取公因式2,再利用完全平方公式分解因式得出答案;(2)直接提取公因式﹣2m2,再利用平方差公式分解因式得出答案.【解析:(1)2(x+4)2;(2)﹣2m2(m+4)(m﹣4)【分析】(1)直接提取公因式2,再利用完全平方公式分解因式得出答案;(2)直接提取公因式﹣2m2,再利用平方差公式分解因式得出答案.【详解】解:(1)2(x+2)2+8(x+2)+8=2[(x+2)2+4(x+2)+4]=2(x+2+2)2=2(x+4)2;(2)﹣2m4+32m2=﹣2m2(m2﹣16)=﹣2m2(m+4)(m﹣4).【点睛】本题考查了提公因式法及公式法分解因式,解题的关键是正确运用公式.19.(1);(2)【分析】(1)用加减消元法解二元一次方程组即可;(2)先将方程组变形,然后用加减消元法解二元一次方程组即可.【详解】解:(1),②+①得,,将代入①得,,∴方解析:(1);(2)【分析】(1)用加减消元法解二元一次方程组即可;(2)先将方程组变形,然后用加减消元法解二元一次方程组即可.【详解】解:(1),②+①得,,将代入①得,,∴方程组的解为;(2)方程组变形为,②×3+①得,,将代入②得,,∴方程组的解为.【点睛】本题考查了解二元一次方程组,熟练掌握加减消元法、代入消元法解二元一次方程组,并能准确计算是解题的关键.20.(1);(2)【分析】(1)按照先去分母,然后去括号,移项,合并同类项,化系数为1的步骤解不等式即可;(2)先求出每个不等式的解集,然后求出不等式组的解集即可.【详解】解:(1),去分母解析:(1);(2)【分析】(1)按照先去分母,然后去括号,移项,合并同类项,化系数为1的步骤解不等式即可;(2)先求出每个不等式的解集,然后求出不等式组的解集即可.【详解】解:(1),去分母得:,去括号得:,移项得:,合并得:,化系数为1得:;(2),解不等式①得:,解不等式②得:,,∴不等式组的解集是.【点睛】本题主要考查了解一元一次不等式和解一元一次不等式组,解题的关键在于能够熟练掌握解一元一次不等式的方法.三、解答题21.(1);理由见解析;(2).【分析】(1)由条件可得到可证得,可得到,结合条件可证明;(2)首先可得,,即可得,然后根据,即可求解.【详解】解:(1),理由如下:如图,,,,,解析:(1);理由见解析;(2).【分析】(1)由条件可得到可证得,可得到,结合条件可证明;(2)首先可得,,即可得,然后根据,即可求解.【详解】解:(1),理由如下:如图,,,,,,,,;(2)平分,,,,,,,,,.【点睛】本题主要考查平行线的判定和性质、平角以及角平分线的定义,掌握平行线的判定和性质是解题的关键.22.(1)60元;(2)215盏【分析】(1)设该商场实际购进每盏彩灯为x元,则实际进价为0.8x元,根据实际比计划多购进100盏彩灯列分式方程求解即可;(2)设再购进彩灯a盏,根据利润=售价﹣进解析:(1)60元;(2)215盏【分析】(1)设该商场实际购进每盏彩灯为x元,则实际进价为0.8x元,根据实际比计划多购进100盏彩灯列分式方程求解即可;(2)设再购进彩灯a盏,根据利润=售价﹣进价以及要求获得利润不低于15000元的关系列出不等式并解答即可.【详解】解:(1)设该商场实际购进每盏彩灯为x元,则实际进价为0.8x元,依题意得:=+100,解得x=75,经检验x=75是所列方程的根,则0.8x=0.8×75=60(元).答:该货栈实际购进每盏彩灯为60元;(2)设再购进彩灯a盏,由(1)知,实际购进30000÷60=500(盏),依题意得:(500+a)(1﹣20%)×60×50%+(500+a)×20%×[60×(1+50%)×0.5﹣60]≥15000,解得a≥.因为a取正整数,所以a=215.答:至少再购进彩灯215盏.【点睛】本题考查了分式方程和一元一次不等式的应用,设出未知数、根据题意列出分式方程和一元一次不等式是解答本题的关键.23.(1);(2)正方形有16个,六边形有12个;(3),,或【解析】【分析】(1)摆1个正方形需要4根小木棍,摆2个正方形需要7根小木棍,摆3个正方形需要10根小木棍…每多一个正方形就多3根小木解析:(1);(2)正方形有16个,六边形有12个;(3),,或【解析】【分析】(1)摆1个正方形需要4根小木棍,摆2个正方形需要7根小木棍,摆3个正方形需要10根小木棍…每多一个正方形就多3根小木棍,则摆p个正方形需要4+3(p-1)=3p+1根小木棍,由此求得答案即可;(2)设连续摆放了六边形x个,正方形y个,则连续摆放正方形共用小木棍(3y+1)根,六方形共用小木棍(5x+1)根,由题意列出方程组解决问题即可;(3)由(1)可知每排用的小木棍数比这排小正方形个数的3倍多1根,由此可得s、t间的关系,再根据s、t均为正整数进行讨论即可求得所有可能的取值.【详解】(1)摆1个正方形需要4根小木棍,4=4+3×(1-1),摆2个正方形需要7根小木棍,4=4+3×(2-1),摆3个正方形需要10根小木棍,10=4+3×(3-1),……,摆p个正方形需要m=4+3×(p-1)=3p+1根木棍,故答案为:;(2)设六边形有个,正方形有y个,则,解得,所以正方形有16个,六边形有12个;(3)据题意,,据题意,,且均为整数,因此可能的取值为:,,或.【点睛】本题考查二元一次方程组的实际运用,找出连续摆放正方形共用小木棍的根数,六方形共用小木棍的根数是解决问题的关键.24.(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析【分析】(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC解析:(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析【分析】(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC,求出∠BAD.在△ABC中利用三角形内角和定理求出∠ABC=∠ACB=40°,根据三角形外角的性质得出∠ADC=∠ABC+∠BAD=100°,在△ADE中利用三角形内角和定理求出∠ADE=∠AED=70°,那么∠CDE=∠ADC-∠ADE=30°;(2)如图②,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根据三角形外角的性质得出∠CDE=∠ACB-∠AED=,再由∠BAD=∠DAC-∠BAC得到∠BAD=n-100°,从而得出结论∠BAD=2∠CDE;(3)如图③,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根据三角形外角的性质得出∠CDE=∠ACD-∠AED=,再由∠BAD=∠BAC+∠DAC得到∠BAD=100°+n,从而得出结论∠BAD=2∠CDE.【详解】解:(1)∠BAD=∠BAC-∠DAC=100°-40°=60°.∵在△ABC中,∠BAC=100°,∠ABC=∠ACB,∴∠ABC=∠ACB=40°,∴∠ADC=∠ABC+∠BAD=40°+60°=100°.∵∠DAC=40°,∠ADE=∠AED,∴∠ADE=∠AED=70°,∴∠CDE=∠ADC-∠ADE=100°-70°=30°.故答案为60,30.(2)∠BAD=2∠CDE,理由如下:如图②,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=,∵∠ACB=∠CDE+∠AED,∴∠CDE=∠ACB-∠AED=40°-=,∵∠BAC=100°,∠DAC=n,∴∠BAD=n-100°,∴∠BAD=2∠CDE.(3)成立,∠BAD=2∠CDE,理由如下:如图③,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°,∴∠ACD=140°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=,∵∠ACD=∠CDE+∠AED,∴∠CDE=∠ACD-∠AED=140°-=,∵∠BAC=100°,∠DAC=n,∴∠BAD=100
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护理意识评估的老年护理应用
- 妇科护理中的健康教育
- 第二章第三节河流第3课时
- 基于物联网的喷泉智能控制架构
- 2026 年中职康复治疗技术类(康复工程)试题及答案
- 2026 年中职金属压力加工(金属加工基础)试题及答案
- 高速铁路旅客服务心理学电子教案 第二章 高速铁路旅客服务与心理学
- 基于2024年中国流感监测周报数据的流感暴发疫情流行特征分析
- 2024年中考道德与法治(陕西)第二次模拟考试(含答案)
- 税务登记表 (适用个体经营)
- 挂名监事免责协议书模板
- 2025房屋买卖合同范本(下载)
- 分布式光伏电站运维管理与考核体系
- 【MOOC期末】《模拟电子技术基础》(华中科技大学)期末考试慕课答案
- 脑炎的护理课件
- 胎头吸引技术课件
- 电池PACK箱体项目可行性研究报告(备案审核模板)
- 贵州省2023年7月普通高中学业水平合格性考试地理试卷(含答案)
- 实施“十五五”规划的发展思路
- 资金无偿赠予协议书
- 课件王思斌:社会工作概论
评论
0/150
提交评论