贵州省铜仁市西片区高中教育联盟2026届数学高一上期末检测试题含解析_第1页
贵州省铜仁市西片区高中教育联盟2026届数学高一上期末检测试题含解析_第2页
贵州省铜仁市西片区高中教育联盟2026届数学高一上期末检测试题含解析_第3页
贵州省铜仁市西片区高中教育联盟2026届数学高一上期末检测试题含解析_第4页
贵州省铜仁市西片区高中教育联盟2026届数学高一上期末检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州省铜仁市西片区高中教育联盟2026届数学高一上期末检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数的部分图象如图所示,则的解析式可能为()A. B.C. D.2.某甲、乙两人练习跳绳,每人练习10组,每组40个.每组计数的茎叶图如下图,则下面结论中错误的一个是()A.甲比乙的极差大B.乙的中位数是18C.甲的平均数比乙的大D.乙的众数是213.如果,,那么()A. B.C. D.4.已知角的终边过点,若,则A.-10 B.10C. D.5.函数的部分图象如图,则()A. B.C. D.6.已知是定义在上的奇函数,且在上单调递增,若,则的解集为()A. B.C. D.7.下列四个函数中,与函数相等的是A. B.C. D.8.直线过点,且与轴正半轴围成的三角形的面积等于的直线方程是()A. B.C. D.9.经过点(2,1)的直线l到A(1,1),B(3,5)两点的距离相等,则直线l的方程为A.2x-y-3=0 B.x=2C.2x-y-3=0或x=2 D.都不对10.下列四组函数中,表示同一函数的一组是()A., B.,C., D.,二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,且,若不等式恒成立,则实数m的取值范围为______12.《九章算术》是我国古代数学成就的杰出代表作,其中"方田"章给出了计算弧田面积时所用的经验公式,即弧田面积(弦×矢+矢2),弧田(如图)由圆弧和其所对弦围成,公式中“弦”指圆弧所对弦长,“矢”指圆弧顶到弦的距离(等于半径长与圆心到弦的距离之差),现有圆心角为2,半径为1米的弧田,按照上述经验公式计算所得弧田面积是_________平方米.(结果保留两位有效数字,参考数据:,)13.命题“,”的否定是_________.14.将一个高为的圆锥沿其侧面一条母线展开,其侧面展开图是半圆,则该圆锥的底面半径为______15.某公司在甲、乙两地销售同一种品牌的汽车,利润(单位:万元)分别为和,其中为销售量(单位:辆).若该公司在两地共销售15辆汽车,则该公司能获得的最大利润为_____万元.16.写出一个同时具有下列性质①②的函数______.(注:不是常数函数)①;②.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线:的倾斜角为(1)求a;(2)若直线与直线平行,且在y轴上的截距为-2,求直线与直线的交点坐标18.某自然资源探险组织试图穿越某峡谷,但峡谷内被某致命昆虫所侵扰,为了穿越这个峡谷,该探险组织进行了详细的调研,若每平方米的昆虫数量记为昆虫密度,调研发现,在这个峡谷中,昆虫密度是时间(单位:小时)的一个连续不间断的函数其函数表达式为,其中时间是午夜零点后的小时数,为常数.(1)求的值;(2)求出昆虫密度的最小值和出现最小值的时间;(3)若昆虫密度不超过1250只/平方米,则昆虫的侵扰是非致命性的,那么在一天24小时内哪些时间段,峡谷内昆虫出现非致命性的侵扰.19.已知函数.(1)求函数的最大值及相应的取值;(2)方程在上有且只有一个解,求实数的取值范围;(3)是否存在实数满足对任意,都存在,使成立.若存在,求的取值范围;若不存在,说明理由.20.已知函数为奇函数,且(1)求函数的解析式;(2)判断函数在的单调性并证明;(3)解关于的x不等式:21.已知函数.(1)判断的奇偶性并证明;(2)用函数单调性的定义证明在区间上单调递增;(3)若对,不等式恒成立,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据奇偶性排除A和D,由排除B.【详解】由图可知,的图象关于原点对称,是奇函数,,,则函数,是偶函数,排除A和D.当时,恒成立,排除B.故选:C2、B【解析】通过茎叶图分别找出甲、乙的最大值以及最小值求出极差即可判断A;找出乙中间的两位数即可判断B;分别求出甲、乙的平均数判断C;观察乙中数据即可判断D;【详解】对于A,由茎叶图可知,甲的极差为,乙的极差为,故A正确;对于B,乙中间两位数为,故中位数为,故B错误;对于C,甲的平均数为,乙的平均数为,故C正确;对于D,乙组数据中出现次数最多为21,故D正确;故选:B【点睛】本题考查了由茎叶图估计样本数据的数字特征,属于基础题.3、D【解析】根据不等式的性质,对四个选项进行判断,从而得到答案.【详解】因为,所以,故A错误;因为,当时,得,故B错误;因为,所以,故C错误;因为,所以,故D正确.故选:D.【点睛】本题考查不等式的性质,属于简单题.4、A【解析】因为角的终边过点,所以,得,故选A.5、C【解析】先利用图象中的1和3,求得函数的周期,求得,最后根据时取最大值1,求得,即可得解【详解】解:根据函数的图象可得:函数的周期为,∴,当时取最大值1,即,又,所以,故选:C【点睛】本题主要考查了由的部分图象确定其解析式,考查了五点作图的应用和图象观察能力,属于基本知识的考查.属于基础题.6、D【解析】由可得,由单调性即可判定在和上的符号,再由奇偶性判定在和上的符号,即可求解.【详解】∵即,∵在上单调递增,∴当时,,此时,当时,,此时,又∵是定义在上的奇函数,∴在上单调递增,且,当时,,此时,当时,,此时,综上可知,的解集为,故选:D【点睛】本题考查了函数的奇偶性和单调性的交汇,求得函数在各个区间上的符号是关键,考查了推理能力,属于中档题.7、D【解析】分别化简每个选项的解析式并求出定义域,再判断是否与相等.【详解】A选项:解析式为,定义域为R,解析式不相同;B选项:解析式为,定义域为,定义域不相同;C选项:解析式为,定义域为,定义域不相同;D选项:解析式为,定义域为R,符合条件,答案为D.【点睛】函数相等主要看:(1)解析式相同;(2)定义域相同.属于基础题.8、A【解析】先设直线方程为:,根据题意求出,即可得出结果.【详解】设所求直线方程为:,由题意得,且解得故,即.故选:A.【点睛】本题主要考查求直线的方程,熟记直线的斜截式方程即可,属于常考题型.9、C【解析】当直线l的斜率不存在时,直线x=2显然满足题意;当直线l的斜率存在时,设直线l的斜率为k则直线l为y-1=kx-2,即由A到直线l的距离等于B到直线l的距离得:-kk化简得:-k=k-4或k=k-4(无解),解得k=2∴直线l的方程为2x-y-3=0综上,直线l的方程为2x-y-3=0或x=2故选C10、C【解析】分析每个选项中两个函数的定义域,并化简函数解析式,利用函数相等的概念可得出合适的选项.【详解】对于A选项,函数的定义域为,函数的定义域为,A选项中的两个函数不相等;对于B选项,函数的定义域为,函数的定义域为,B选项中的两个函数不相等;对于C选项,函数、的定义域均为,且,C选项中的两个函数相等;对于D选项,对于函数,有,解得,所以,函数的定义域为,函数的定义域为,D选项中的两个函数不相等.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由基本不等式求得的最小值,解不等式可得的范围【详解】∵,,,,∴,当且仅当,即时等号成立,∴的最小值为8,由解得,故答案为:12、【解析】由题设可得“弦”为,“矢”为,结合弧田面积公式求面积即可.【详解】由题设,“弦”为,“矢”为,所以所得弧田面积是.故答案为:.13、,##【解析】根据全称量词命题的否定即可得出结果.【详解】由题意知,命题“”的否定为:.故答案为:.14、1【解析】设该圆锥的底面半径为r,推导出母线长为2r,再由圆锥的高为,能求出该圆锥的底面半径【详解】设该圆锥的底面半径为r,将一个高为的圆锥沿其侧面一条母线展开,其侧面展开图是半圆,,解得,圆锥的高为,,解得故答案为1【点睛】本题考查圆锥的底面半径的求法,考查圆锥性质、圆等基础知识,考查运算求解能力,是基础题15、【解析】设该公司在甲地销x辆,那么乙地销15-x辆,利润L(x)=5.06x-0.15x2+2(15-x)=-0.15x2+3.06x+30.由L′(x)=-0.3x+3.06=0,得x=10.2.且当x<10.2时,L′(x)>0,x>10.2时,L′(x)<0,∴x=10时,L(x)取到最大值,这时最大利润为45.6万元答案:45.6万元16、【解析】根据函数值以及函数的周期性进行列举即可【详解】由知函数的周期是,则满足条件,,满足条件,故答案为:(答案不唯一)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)-1;(2)(4,2).【解析】(1)根据倾斜角和斜率的关系可得,即可得a值.(2)由直线平行有直线为,联立直线方程求交点坐标即可.【小问1详解】因为直线的斜率为,即,故【小问2详解】依题意,直线的方程为将代入,得,故所求交点的(4,2)18、(1)(2)昆虫密度的最小值为0,出现最小值的时间为和(3)至至【解析】(1)由题意得,解出即可;(2)将看成一个整体,将函数转化为二次函数,根据二次函数的单调性即可得出结论;(3)解不等式即可得出结论【详解】解:(1)因为它是一个连续不间断的函数,所以当时,得到,即;(2)当时,,,则当时,达到最小值0,,解得,所以在和时,昆虫密度达到最小值,最小值为0;(3)时,令,得,即,即,即,解得,,因为,令得,令得所以,所以,在至至内,峡谷内昆虫出现非致命性的侵扰【点睛】本题主要考查分段函数在实际问题中的应用,同时考查了三角函数的应用,属于中档题19、(1)2,(2)或(3)存在,【解析】(1)由三角恒等变换化简函数,再根据正弦函数性质可求得答案;(2)将问题转化为函数与函数在上只有一个交点.由函数的单调性和最值可求得实数的取值范围;(3)由(1)可知,由已知得,成立,令,其对称轴,分,,讨论函数的最小值,建立不等式,求解即可.【小问1详解】解:由得.令,解得,∴函数的最大值为2,此时;【小问2详解】解:方程在上有且有一个解,即函数与函数在上只有一个交点.∵,∴.∵函数在上单调递增,在上单调递减,且,,.∴或;【小问3详解】解:由(1)可知,∴.实数满足对任意,都存在,使得成立,即成立,令,其对称轴,∵,∴①当时,即,,∴;②当,即时,,∴;③当,即时,,∴.综上可得,存在满足题意的实数,的取值范围是.20、(1);(2)在上单调递增,证明见解析;(3).【解析】(1)由奇函数的定义有,可求得的值,又由,可得的值,从而即可得函数的解析式;(2)任取,,且,由函数单调性的定义即可证明函数在上单调递增;(3)由(2)知在上单调递增,因为为奇函数,所以在上也单调递增,又,从而利用单调性即可求解.【小问1详解】解:因为函数为奇函数,定义域为,所以,即,所以,又,所以,所以;【小问2详解】解:在上单调递增,证明如下:任取,,且,则,又,,且,所以,,,所以,即,所以在上单调递增;【小问3详解】解:由(2)知在上单调递增,因为为奇函数,所以在上也单调递增,令,解得或因为,且,所以,所以,解得,又,所以原不等式的解集为.21、(1)为奇函数,证明见

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论