版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市嘉定二中2026届数学高一上期末监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过5000元的部分不必纳税,超过5000元的部分为全月应纳税所得额,此项税款按下表分段累计计算:全月应纳税所得额税率不超过3000元的部分超过3000元至12000元的部分超过12000元至25000元的部分有一职工八月份收入20000元,该职工八月份应缴纳个税为()A.2000元 B.1500元C.990元 D.1590元2.定义在上的函数满足下列三个条件:①;②对任意,都有;③的图像关于轴对称.则下列结论中正确的是AB.C.D.3.已知函数(且)图像经过定点A,且点A在角的终边上,则()A. B.C.7 D.4.郑州地铁1号线的开通运营,极大方便了市民的出行.某时刻从二七广场站驶往博学路站的过程中,10个车站上车的人数统计如下:70,60,60,60,50,40,40,30,30,10.这组数据的平均数,众数,90%分位数的和为()A.125 B.135C.165 D.1705.已知函数是R上的偶函数.若对于都有,且当时,,则的值为()A.﹣2 B.﹣1C.1 D.26.设集合U=R,,,则图中阴影部分表示的集合为()A.{x|x≥1} B.{x|1≤x<2}C.{x|0<x≤1} D.{x|x≤0}7.函数的值域是A. B.C. D.8.已知函数的最小正周期为π,且关于中心对称,则下列结论正确的是()A. B.C D.9.若方程x2+ax+a=0的一根小于﹣2,另一根大于﹣2,则实数a的取值范围是()A.(4,+∞) B.(0,4)C.(﹣∞,0) D.(﹣∞,0)∪(4,+∞)10.已知函数是定义在上的偶函数,对任意,都有,当时,,则A. B.C.1 D.二、填空题:本大题共6小题,每小题5分,共30分。11.某次学科测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图.则参加测试的总人数为______,分数在之间的人数为______.12.已知扇形周长为4,圆心角为,则扇形面积为__________.13.已知,则___________.14.已知幂函数是奇函数,则___________.15.函数的最小值为______.16.若幂函数在区间上是减函数,则整数________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.—条光线从点发出,经轴反射后,经过点,求入射光线和反射光线所在的直线方程.18.如图,某地一天从6~14时的温度变化曲线近似满足函数(,).(1)求这一天6~14时的最大温差;(2)写出这段曲线的解析式;(3)预测当天12时的温度(,结果保留整数).19.若函数的定义域为,集合,若存在非零实数使得任意都有,且,则称为上的-增长函数.(1)已知函数,函数,判断和是否为区间上的增长函数,并说明理由;(2)已知函数,且是区间上的-增长函数,求正整数的最小值;(3)如果是定义域为的奇函数,当时,,且为上的增长函数,求实数的取值范围.20.已知函数.(1)判断函数的奇偶性;(2)求证:函数在为单调增函数;(3)求满足的的取值范围.21.如图在三棱锥中,分别为棱的中点,已知.求证:(1)直线平面;(2)平面平面.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据税款分段累计计算的方法,分段求得职工超出元的部分的纳税所得额,即可求解.【详解】由题意,职工八月份收入为元,其中纳税部分为元,其中不超过3000元的部分,纳税额为元,超过3000元至12000元的部分,纳税额为元,超过12000元至25000元的部分,纳税额为元,所以该职工八月份应缴纳个税为元.故选:D.2、D【解析】先由,得函数周期为6,得到f(7)=f(1);再利用y=f(x+3)的图象关于y轴对称得到y=f(x)的图象关于x=3轴对称,进而得到f(1)=f(5);最后利用条件(2)得出结论因为,所以;即函数周期为6,故;又因为的图象关于y轴对称,所以的图象关于x=3对称,所以;又对任意,都有;所以故选:D考点:函数的奇偶性和单调性;函数的周期性.3、B【解析】令指数为零,即可求出函数过定点,再根据三角函数的定义求出,最后根据同角三角函数的基本关系将弦化切,再代入计算可得;【详解】解:令解得,所以,故函数(且)过定点,所以由三角函数定义得,所以,故选:B4、D【解析】利用公式可求平均数和90%分位数,再求出众数后可得所求的和.【详解】这组数据的平均数为,而,故90%分位数,众数为,故三者之和为,故选:D.5、C【解析】根据题意求得函数的周期,结合函数性质,得到,在代入解析式求值,即可求解.【详解】因为为上的偶函数,所以,又因为对于,都有,所以函数的周期,且当时,,所以故选:C.6、D【解析】先求出集合A,B,再由图可知阴影部分表示,从而可求得答案【详解】因为等价于,解得,所以,所以或,要使得函数有意义,只需,解得,所以则由韦恩图可知阴影部分表示.故选:D.7、C【解析】函数中,因为所以.有.故选C.8、B【解析】根据周期性和对称性求得函数解析式,再利用函数单调性即可比较函数值大小.【详解】根据的最小正周期为,故可得,解得.又其关于中心对称,故可得,又,故可得.则.令,解得.故在单调递增.又,且都在区间中,且,故可得.故选:.【点睛】本题考查由三角函数的性质求解析式,以及利用三角函数的单调性比较函数值大小,属综合基础题.9、A【解析】令,利用函数与方程的关系,结合二次函数的性质,列出不等式求解即可.【详解】令,∵方程的一根小于,另一根大于,∴,即,解得,即实数的取值范围是,故选A.【点睛】本题考查一元二次函数的零点与方程根的关系,数形结合思想在一元二次函数中的应用,是基本知识的考查10、C【解析】由题意,故选C二、填空题:本大题共6小题,每小题5分,共30分。11、①.25②.4【解析】根据条件所给的茎叶图看出分数在[50,60)之间的频数,由频率分布直方图看出分数在[50,60)之间的频率和[90,100)之间的频率一样,继而得到参加测试的总人数及分数在[80,90)之间的人数.【详解】成绩在[50,60)内的频数为2,由频率分布直方图可以看出,成绩在[90,100]内同样有2人,由,解得n=25,成绩在[80,90)之间的人数为25-(2+7+10+2)=4人,所以参加测试人数n=25,分数在[80,90)的人数为4人.故答案为:25;4【点睛】本题主要考查茎叶图、频率分布直方图,样本的频率分布估计总体的分布,属于容易题.12、1【解析】利用扇形的弧长公式求半径,再由扇形面积公式求其面积即可.【详解】设扇形的半径为,则,可得,而扇形的弧长为,所以扇形面积为.故答案为:1.13、##-0.75【解析】将代入函数解析式计算即可.【详解】令,则,所以.故答案为:14、1【解析】根据幂函数定义可构造方程求得,将的值代入解析式验证函数奇偶性可确定结果.【详解】由题意得,∴或1,当时,是偶函数;当时,是奇函数.故答案为:1.15、【解析】先根据二倍角余弦公式将函数转化为二次函数,再根据二次函数性质求最值.【详解】所以令,则因此当时,取最小值,故答案为:【点睛】本题考查二倍角余弦公式以及二次函数最值,考查基本分析求解能力,属基础题.16、2【解析】由题意可得,求出的取值范围,从而可出整数的值【详解】因为幂函数在区间上是减函数,所以,解得,因为,所以,故答案为:2三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、入射光线所在直线方程为2x-y-4=0,反射光线所在直线方程为2x+y-4=0【解析】如图所示,作A点关于x轴的对称点A′,显然,A′坐标为(3,-2),连接A′B,则A′B所在直线即为反射光线由两点式可得直线A′B的方程为,即2x+y-4=0.同理,点B关于x轴的对称点为B′(-1,-6),由两点式可得直线AB′的方程为,即2x-y-4=0,∴入射光线所在直线方程为2x-y-4=0,反射光线所在直线方程为2x+y-4=0.考点:两点式直线方程,对称问题.18、(1)20℃;(2)();(3)27℃.【解析】(1)观察图象求出函数的最大、最小值即可计算作答;(2)根据给定图象求出解析式中相关参数,即可代入作答;(3)求出当时的y值作答.【小问1详解】观察图象得:6时的温度最低为10℃,14时的温度最高为30℃,所以这一天6~14时的最大温差为20℃.【小问2详解】观察图象,由解得:,周期,,即,则,而当时,,则,又,有,所以这段曲线的解析式为:,.小问3详解】由(2)知,当时,,预测当天12时的温度为27℃.19、(1)是,不是,理由见解析;(2);(3).【解析】(1)利用给定定义推理判断或者反例判断而得;(2)把恒成立的不等式等价转化,再求函数最小值而得解;(3)根据题设条件,写出函数f(x)的解析式,再分段讨论求得,最后证明即为所求.【详解】(1)g(x)定义域R,,g(x)是,取x=-1,,h(x)不是,函数是区间上的增长函数,函数不是;(2)依题意,,而n>0,关于x的一次函数是增函数,x=-4时,所以n2-8n>0得n>8,从而正整数n的最小值为9;(3)依题意,,而,f(x)在区间[-a2,a2]上是递减的,则x,x+4不能同在区间[-a2,a2]上,4>a2-(-a2)=2a2,又x∈[-2a2,0]时,f(x)≥0,x∈[0,2a2]时,f(x)≤0,若2a2<4≤4a2,当x=-2a2时,x+4∈[0,2a2],f(x+4)≤f(x)不符合要求,所以4a2<4,即-1<a<1.因为:当4a2<4时,①x+4≤-a2,f(x+4)>f(x)显然成立;②-a2<x+4<a2时,x<a2-4<-3a2,f(x+4)=-(x+4)>-a2,f(x)=x+2a2<-a2,f(x+4)>f(x);③x+4>a2时,f(x+4)=(x+4)-2a2>x+2a2≥f(x),综上知,当-1<a<1时,为上的增长函数,所以实数a的取值范围是(-1,1).【点睛】(1)以函数为背景定义的创新试题,认真阅读,分析转化成常规函数解决;(2)分段函数解析式中含参数,相应区间也含有相同的这个参数,要结合函数图象综合考察,并对参数进行分类讨论.20、(1)为奇函数;(2)证明见解析;(3).【解析】(Ⅰ)求出定义域为{x|x≠0且x∈R},关于原点对称,再计算f(-x),与f(x)比较即可得到奇偶性;(Ⅱ)运用单调性的定义,注意作差、变形、定符号、下结论等步骤;(Ⅲ)讨论x>0,x<0,求出f(x)的零点,再由单调性即可解得所求取值范围试题解析:(1)定义域为{x|x≠0且x∈R},关于原点对称,,所以为奇函数;(2)任取,所以在为单调增函数;(3)解得,所以零点为,当时,由(2)可得的的取值范围为,的的取值范围为,又该函数为奇函数,所以当时,由(2)可得的的取值范围为,综上:所以解集为.21、(1)证明见解析;(2)证明见解析【解析】(1)本题证明线面平行,根据其判定定理,需要在平面内找
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年海南省公需课学习-生态环境公益诉讼制度研究1026
- 2025年营养健康顾问知识竞赛题库及答案(共120题)
- 2025年安全生产知识竞赛题及答案(共60题)
- 期末培优验收卷三(试卷)2025-2026学年六年级语文上册(统编版)
- 深圳数学试卷及详细答案
- 陇南医院招聘试题及答案
- 农村荒山购买合同范本
- 维护版权的合同范本
- 2025年高考美术统考题库及答案
- 2025年纪委监委笔试真题及答案
- 公司法人变更协议书
- 7《包身工》课件2025-2026学年统编版高中语文选择性必修中册
- 2025广东珠海市金湾区红旗镇招聘编外人员23人笔试考试参考试题及答案解析
- (新教材)部编人教版三年级上册语文 习作:那次经历真难忘 教学课件
- 甘草成分的药理作用研究进展-洞察及研究
- 具身智能+文化遗产数字化保护方案可行性报告
- (2025年新教材)部编人教版二年级上册语文 语文园地七 课件
- 广东深圳市2026届化学高三第一学期期末学业质量监测模拟试题含解析
- 电力公司考试大题题库及答案
- 国企金融招聘笔试题及答案
- 重庆市金太阳好教育联盟2026届高三10月联考(26-65C)英语(含答案)
评论
0/150
提交评论