版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届安徽合肥市高二数学第一学期期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知圆O的半径为5,,过点P的2021条弦的长度组成一个等差数列,最短弦长为,最长弦长为,则其公差为()A. B.C. D.2.椭圆的一个焦点坐标为,则实数m的值为()A.2 B.4C. D.3.若直线与互相垂直,则实数a的值为()A.-3 B.C. D.34.命题“存在,使得”的否定为()A.存在, B.对任意,C对任意, D.对任意,5.箱子中有5件产品,其中有2件次品,从中随机抽取2件产品,设事件=“至少有一件次品”,则的对立事件为()A.至多两件次品 B.至多一件次品C.没有次品 D.至少一件次品6.若方程表示焦点在y轴上的双曲线,则实数m的取值范围为()A. B.C. D.且7.已知,,若,则()A.9 B.6C.5 D.38.已知点为直线上任意一点,为坐标原点.则以为直径的圆除过定点外还过定点()A. B.C. D.9.椭圆的长轴长是()A.3 B.4C.6 D.810.已知数列的前项和为,当时,()A.11 B.20C.33 D.3511.抛物线的焦点为F,准线为l,点P是准线l上的动点,若点A在抛物线C上,且,则(O为坐标原点)的最小值为()A. B.C. D.12.已知直线l1:y=x+2与l2:2ax+y﹣1=0垂直,则a=()A. B.C.﹣1 D.1二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆的两个焦点分别为,,,点在椭圆上,若,且的面积为4,则椭圆的标准方程为______14.以点为圆心,且与直线相切的圆的方程是__________15.如图是用斜二测画法画出水平放置的正三角形ABC的直观图,其中,则三角形的面积为______.16.一条光线从点射出,经x轴反射,其反射光线所在直线与圆相切,则反射光线所在的直线方程为____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆,点(1)若点在圆外部,求实数的取值范围;(2)当时,过点的直线交圆于,两点,求面积的最大值及此时直线l的斜率18.(12分)如图,矩形和菱形所在的平面相互垂直,,为的中点.(1)求证:平面;(2)若,求二面角的余弦值.19.(12分)已知圆C的圆心在直线上,且圆C经过,两点.(1)求圆C的标准方程.(2)设直线与圆C交于A,B(异于坐标原点O)两点,若以AB为直径的圆过原点,试问直线l是否过定点?若是,求出定点坐标;若否,请说明理由.20.(12分)设数列满足,数列的前项和为,且(1)求证:数列为等差数列,并求的通项公式;(2)设,若对任意正整数,当时,恒成立,求实数的取值范围.21.(12分)已知中心在坐标原点O的椭圆,左右焦点分别为,,离心率为,M,N分别为椭圆的上下顶点,且满足.(1)求椭圆方程;(2)已知点C满足,点T在椭圆上(T异于椭圆的顶点),直线NT与以C为圆心的圆相切于点P,若P为线段NT的中点,求直线NT的方程;(3)过椭圆内的一点D(0,t),作斜率为k的直线l,与椭圆交于A,B两点,直线OA,OB的斜率分别是,,若对于任意实数k,存在实数m,使得,求实数m的取值范围.22.(10分)已知椭圆的上一点处的切线方程为,椭圆C上的点与其右焦点F的最短距离为,离心率为(1)求椭圆C的标准方程;(2)若点P为直线上任一点,过P作椭圆的两条切线PA,PB,切点为A,B,求证:
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】可得过点P的最长弦长为直径,最短弦长为过点P的与垂直的弦,分别求出即可得出公差.【详解】可得过点P的最长弦长为直径,,最短弦长为过点P的与垂直的弦,,公差.故选:B.2、C【解析】由焦点坐标得到,求解即可.【详解】根据焦点坐标可知,椭圆焦点在y轴上,所以有,解得故选:C.3、C【解析】根据给定条件利用两条直线互相垂直的关系列式计算作答.【详解】因直线与互相垂直,则,解得,所以实数a的值为.故选:C4、D【解析】根据特称命题否定的方法求解,改变量词,否定结论.【详解】由题意可知命题“存在,使得”的否定为“对任意,”.故选:D.5、C【解析】利用对立事件的定义,分析即得解【详解】箱子中有5件产品,其中有2件次品,从中随机抽取2件产品,可能出现:“两件次品”,“一件次品,一件正品”,“两件正品”三种情况根据对立事件的定义,事件=“至少有一件次品”其对立事件为:“两件正品”,即”没有次品“故选:C6、A【解析】根据双曲线定义,且焦点在y轴上,则可直接列出相关不等式.【详解】若方程表示焦点在y轴上的双曲线,则必有:,且解得:故选:7、D【解析】根据空间向量垂直的坐标表示即可求解.【详解】.故选:D.8、D【解析】设垂直于直线,可知圆恒过垂足;两条直线方程联立可求得点坐标.【详解】设垂直于直线,垂足为,则直线方程为:,由圆的性质可知:以为直径的圆恒过点,由得:,以为直径的圆恒过定点.故选:D.9、D【解析】根据椭圆方程可得到a,从而求得长轴长.【详解】椭圆方程为,故,所以椭圆长轴长为,故选:D.10、B【解析】由数列的性质可得,计算可得到答案.【详解】由题意,.故答案为B.【点睛】本题考查了数列的前n项和的性质,属于基础题.11、D【解析】依题意得点坐标,作点关于的对称点,则,求即为最小值【详解】如图所示:作点关于的对称点,连接,设点,不妨设,由题意知,直线l方程为,则,得所以,得,所以由,当三点共线时取等号,又所以最小值为故选:D12、A【解析】利用两直线垂直斜率关系,即可求解.【详解】直线l1:y=x+2与l2:2ax+y﹣1=0垂直,.故选:A【点睛】本题考查两直线垂直间的关系,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意得到为直角三角形.设,,根据椭圆的离心率,定义,直角三角形的面积公式,勾股定理建立方程的方程组,消元后可求得的值.【详解】由题可知,∴,又,代入上式整理得,由得为直角三角形又的面积为4,设,,则解得所以椭圆的标准方程为14、;【解析】根据相切可得圆心到直线距离即为圆的半径,利用点到直线距离公式解出半径,即可得到圆的方程【详解】由题,设圆心到直线的距离为,所以,因为圆与直线相切,则,所以圆的方程为,故答案为:【点睛】本题考查利用直线与圆的位置关系求圆的方程,考查点到直线距离公式的应用15、【解析】根据直观图和平面图的关系可求出,进而利用面积公式可得三角形的面积【详解】由已知可得则故答案为:.16、或【解析】点关于轴的对称点为,即反射光线过点,分别讨论反射光线的斜率存在与不存在的情况,进而求解即可【详解】点关于轴的对称点为,(1)设反射光线的斜率为,则反射光线的方程为,即,因为反射光线与圆相切,所以圆心到反射光线的距离,即,解得,所以反射光线方程为:;(2)当不存在时,反射光线,此时,也与圆相切,故答案为:或【点睛】本题考查直线在光学中的应用,考查圆的切线方程三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)最大值为2,【解析】(1)根据题意,将圆的方程变形为标准方程,由点与圆的位置关系可得,求解不等式组得答案;(2)当时,圆的方程为,求出圆心与半径,设,则,分析可得面积的最大值,结合直线与圆的位置关系可得圆心到直线的距离,设直线的方程为,即,由点到直线的距离公式列式求得的值【详解】解:(1)根据题意,圆,即,若在圆外,则有,解得:,即的取值范围为;(2)当时,圆的方程为,圆心为,半径,设,则,当时,面积取得最大值,且其最大值为2,此时为等腰直角三角形,圆心到直线的距离,设直线的方程为,即,则有,解得,即直线的斜率【点睛】易错点点睛:本题第一问解答过程中,容易忽视二元二次方程表示圆的条件,导致出错,解题的时候要考虑周全,考查运算求解能力,是中档题.18、(1)证明见解析;(2).【解析】(1)利用面面垂直和线面垂直的性质定理可证得;由菱形边长和角度的关系可证得;利用线面垂直的判定定理可证得结论;(2)以为坐标原点建立起空间直角坐标系,利用空间向量法可求得二面角的余弦值.详解】(1)平面平面,平面平面,且平面,平面,平面,,四边形为菱形且为中点,,又,,又,,平面,,平面.(2)以为坐标原点可建立如下图所示的空间直角坐标系,设,则,,,,,,则,,,设平面的法向量,则,令,则,,,设平面的法向量,则,令,则,,,,二面角为钝二面角,二面角的余弦值为.【点睛】本题考查立体几何中线面垂直关系的证明、空间向量法求解二面角的问题;涉及到面面垂直的性质定理、线面垂直的判定与性质定理的应用,属于常考题型.19、(1)(2)过定点,定点为【解析】(1)设出圆C的标准方程,由题意列出方程从而可得答案.(2)设,,将直线的方程与圆C的方程联立,得出韦达定理,由条件可得,从而得出答案.【小问1详解】设圆C的标准方程为由题意可得解得,,.故圆C的标准方程为.【小问2详解】设,.联立整理的,则,,故.因为以AB为直径的圆过原点,所以,即则,化简得.当时,直线,直线l过原点,此时不满足以AB为直径的圆过原点.所以,则,则直线过定点.20、(1)证明见解析,;(2)或.【解析】(1)结合与关系用即可证明为常数;求出通项公式后利用累加法即可求的通项公式;(2)裂项相消求,判断单调性求其最大值即可.【小问1详解】当时,得到,∴,当时,是以4为首项,2为公差的等差数列∴当时,当时,也满足上式,.【小问2详解】令,当,因此的最小值为,的最大值为对任意正整数,当时,恒成立,得,即在时恒成立,,解得t<0或t>3.21、(1)1(2)或(3)【解析】(1)由已知可得,,再结合可求出,从而可求得椭圆方程,(2)设直线,代入椭圆方程中消去,解方程可求出点的坐标,从而可得NT中点的坐标,而,可得解方程可求出的值,即可得到直线NT的方程,(3)设直线,代入椭圆方程中消去,利用根与系数的关系结合直线的斜率公式可得,再由,可求出m的取值范围【小问1详解】设(c,0),M(0,b),N(0,b),①,又②,③,由①②③得,所以椭圆方程为1.【小问2详解】由题C,0),设直线联立得,那么,N(0,)NT中点.所以,因为直线NT与以C为圆心的圆相切于点P,所以所以所以得,解得或所以直线NT为:或.【小问3详解】设直线,联立方程得设A(,),B,),则…由对任意k成立,得点D在椭圆内,所以,所以,所以m的取值范围为.22、(1)(2)证明见解析【解析】(1)设为椭圆上的点,为椭圆的右焦点,求出然后求解最
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 初级中药学试题及答案
- 办公设备回收合同(2025年)
- 办公空间租赁合同协议2025
- 2025年河北省公需课学习-环境影响评价制度改革专题642
- 2025年招录政府专职消防文员笔试判读题130题及答案
- 2025年口腔外科重点题库及答案
- 文艺美学考试题型及答案
- 市立中学考试题库及答案
- 忻州高三考试题目及答案
- 北京司机劳务合同范本
- 蛋糕店充值卡合同范本
- 消防系统瘫痪应急处置方案
- 《美国和巴西》复习课
- 模切机个人工作总结
- 尿道损伤教学查房
- 北师大版九年级中考数学模拟试卷(含答案)
- 三国杀游戏介绍课件
- 开放大学土木工程力学(本)模拟题(1-3)答案
- 医疗机构远程医疗服务实施管理办法
- 情感性精神障碍护理课件
- 从投入产出表剖析进出口贸易结构
评论
0/150
提交评论