【《光流控微腔激光器国内外研究现状及生化传感应用分析》5600字】_第1页
【《光流控微腔激光器国内外研究现状及生化传感应用分析》5600字】_第2页
【《光流控微腔激光器国内外研究现状及生化传感应用分析》5600字】_第3页
【《光流控微腔激光器国内外研究现状及生化传感应用分析》5600字】_第4页
【《光流控微腔激光器国内外研究现状及生化传感应用分析》5600字】_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

附录光流控微腔激光器国内外研究现状及生化传感应用分析光流控技术将光学元件集成于微流控系统中,使整个系统具有更高的集成度和便携性。光微流微腔激光器,采用有机染料等发光材料溶液作为增益介质,光学微腔作为激光器的谐振腔,是光流控系统的重要分支,将染料激光器与微流控技术集成,不仅促进了完整的“芯片实验室”系统的实现,还可以动态控制激光器的输出波长等特性,这在固态光学组件中无法实现。随着现代微纳加工技术及激光技术的快速发展,多种多样的光流控微腔激光器被实现,主要是通过改善光学微腔和提高有机染料等的荧光效率,实现光流控微腔激光器的更微小型、可靠、便携、低阈值及激光方向性出射等。第一个光流控微腔激光器是由丹麦科技大学的B.Helbo等人在2003年实现的ADDINEN.CITE<EndNote><Cite><Author>Helbo</Author><Year>2003</Year><RecNum>40</RecNum><DisplayText><styleface="superscript">[9]</style></DisplayText><record><rec-number>40</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1611647501">40</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Helbo,B.</author><author>Kristensen,A.</author><author>Menon,A.</author></authors></contributors><titles><title>Amicro-cavityfluidicdyelaser</title><secondary-title>JournalofMicromechanicsandMicroengineering</secondary-title></titles><periodical><full-title>JournalofMicromechanicsandMicroengineering</full-title></periodical><pages>307-311</pages><volume>13</volume><number>2</number><dates><year>2003</year><pub-dates><date>2003/01/28</date></pub-dates></dates><publisher>IOPPublishing</publisher><isbn>0960-1317</isbn><urls><related-urls><url>/10.1088/0960-1317/13/2/320</url></related-urls></urls><electronic-resource-num>10.1088/0960-1317/13/2/320</electronic-resource-num></record></Cite></EndNote>[\o"Helbo,2003#40"9],通过在微流芯片上的两块平面反射镜构成FP谐振腔实现了一个片上光流控激光器,其采用溶解于乙醇中的罗丹明6G溶液作为增益介质,阈值为34mW/cm2。之后,很多的科研人员依然致力于研究基于FP谐振腔的光流控微腔激光器,实现具有波长可调、低阈值等特性的光流控FP微腔激光器。同为丹麦科技大学的M.Gersborg-Hansen研究了光流控微腔激光器中光漂白动力学,实现了微流体控制设备的简化ADDINEN.CITE<EndNote><Cite><Author>Gersborg-Hansen</Author><Year>2007</Year><RecNum>131</RecNum><DisplayText><styleface="superscript">[81]</style></DisplayText><record><rec-number>131</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1612095914">131</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Gersborg-Hansen,Morten</author><author>Balslev,Soren</author><author>Mortensen,NielsAsger</author><author>Kristensen,Anders</author></authors></contributors><titles><title>Bleachinganddiffusiondynamicsinoptofluidicdyelasers</title><secondary-title>AppliedPhysicsLetters</secondary-title></titles><periodical><full-title>AppliedPhysicsLetters</full-title></periodical><volume>90</volume><number>14</number><dates><year>2007</year><pub-dates><date>Apr2</date></pub-dates></dates><isbn>0003-6951</isbn><accession-num>WOS:000245512200098</accession-num><urls><related-urls><url><GotoISI>://WOS:000245512200098</url></related-urls></urls><custom7>143501</custom7><electronic-resource-num>10.1063/1.2718503</electronic-resource-num></record></Cite></EndNote>[\o"Gersborg-Hansen,2007#131"81];W.LEE等科研人员研究通过控制流体特性实现光流控微腔激光器的波长可调谐ADDINEN.CITEADDINEN.CITE.DATA[\o"Lee,2017#135"82-84],如采用掺有液晶的染料作为增益材料,通过外加电场,得到了波长可调的光流控FP微腔激光器ADDINEN.CITE<EndNote><Cite><Author>Lee</Author><Year>2017</Year><RecNum>135</RecNum><DisplayText><styleface="superscript">[82]</style></DisplayText><record><rec-number>135</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1612097255">135</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Lee,Wonsuk</author><author>Wang,Wenjie</author><author>Lee,Guksik</author><author>Ryu,SeongHo</author><author>Fan,Xudong</author><author>Yoon,DongKi</author></authors></contributors><titles><title>Electro-tunableliquidcrystallaserbasedonhigh-QFabry-Perotmicrocavity</title><secondary-title>OpticsExpress</secondary-title></titles><periodical><full-title>OpticsExpress</full-title></periodical><pages>874-880</pages><volume>25</volume><number>2</number><dates><year>2017</year><pub-dates><date>Jan23</date></pub-dates></dates><isbn>1094-4087</isbn><accession-num>WOS:000396518400033</accession-num><urls><related-urls><url><GotoISI>://WOS:000396518400033</url></related-urls></urls><electronic-resource-num>10.1364/oe.25.000874</electronic-resource-num></record></Cite></EndNote>[\o"Lee,2017#135"82];较多的科研人员致力于提高FP微腔的Q值及减小FP微腔的模式体积,实现光流控FP微腔激光器的阈值降低ADDINEN.CITEADDINEN.CITE.DATA[\o"Simoni,2016#136"85-89],如在FP微腔中间放置荧光微球或由二氧化硅毛细管制作而成的微泡,在FP微腔的纵向对光进行约束,提高了微腔的Q值,使激光器的阈值降为1.25µJ/mm2ADDINEN.CITE<EndNote><Cite><Author>Chen</Author><Year>2020</Year><RecNum>141</RecNum><DisplayText><styleface="superscript">[90]</style></DisplayText><record><rec-number>141</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1612098573">141</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Chen,Xiaogang</author><author>Zhao,Xuyang</author><author>Guo,Zhihe</author><author>Fu,Liang</author><author>Lu,Qijing</author><author>Xie,Shusen</author><author>Wu,Xiang</author></authors></contributors><titles><title>OptofluidicmicrobubbleFabry–Pérotcavity</title><secondary-title>OpticsExpress</secondary-title><alt-title>Opt.Express</alt-title></titles><periodical><full-title>OpticsExpress</full-title></periodical><pages>15161-15172</pages><volume>28</volume><number>10</number><keywords><keyword>Finiteelementmethod</keyword><keyword>Highpowerlasers</keyword><keyword>Lasermaterialsprocessing</keyword><keyword>Opticaldevices</keyword><keyword>Qfactor</keyword><keyword>Singlemodelasers</keyword></keywords><dates><year>2020</year><pub-dates><date>2020/05/11</date></pub-dates></dates><publisher>OSA</publisher><urls><related-urls><url>/abstract.cfm?URI=oe-28-10-15161</url></related-urls></urls><electronic-resource-num>10.1364/OE.392728</electronic-resource-num></record></Cite></EndNote>[\o"Chen,2020#141"90];太原理工大学的W.Wang等人和上海交通大学的Y.Kong等人更是用一系列高Q值平凹型FP微腔实现了光流控激光阵列ADDINEN.CITE<EndNote><Cite><Author>Wang</Author><Year>2015</Year><RecNum>143</RecNum><DisplayText><styleface="superscript">[91]</style></DisplayText><record><rec-number>143</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1612101786">143</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Wang,Wenjie</author><author>Zhou,Chunhua</author><author>Zhang,Tingting</author><author>Chen,Jingdong</author><author>Liu,Shaoding</author><author>Fan,Xudong</author></authors></contributors><titles><title>Optofluidiclaserarraybasedonstablehigh-QFabry–Pérotmicrocavities</title><secondary-title>LabonaChip</secondary-title></titles><periodical><full-title>LabonaChip</full-title></periodical><pages>3862-3869</pages><volume>15</volume><number>19</number><dates><year>2015</year></dates><publisher>TheRoyalSocietyofChemistry</publisher><isbn>1473-0197</isbn><work-type>10.1039/C5LC00847F</work-type><urls><related-urls><url>/10.1039/C5LC00847F</url></related-urls></urls><electronic-resource-num>10.1039/C5LC00847F</electronic-resource-num></record></Cite></EndNote>[\o"Wang,2015#143"91]和通过设计层流控制系统实现了光流控FP微腔激光器白色激光的发射ADDINEN.CITE<EndNote><Cite><Author>Kong</Author><Year>2018</Year><RecNum>144</RecNum><DisplayText><styleface="superscript">[92]</style></DisplayText><record><rec-number>144</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1612102222">144</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Kong,Yue</author><author>Dai,Hailang</author><author>He,Xie</author><author>Zheng,Yuanlin</author><author>Chen,Xianfeng</author></authors></contributors><titles><title>ReconfigurableRGBdyelasersbasedonthelaminarflowcontrolinanoptofluidicchip</title><secondary-title>OpticsLetters</secondary-title><alt-title>Opt.Lett.</alt-title></titles><periodical><full-title>OpticsLetters</full-title><abbr-1>Opt.Lett.</abbr-1></periodical><alt-periodical><full-title>OpticsLetters</full-title><abbr-1>Opt.Lett.</abbr-1></alt-periodical><pages>4461-4464</pages><volume>43</volume><number>18</number><keywords><keyword>Lasersandlaseroptics</keyword><keyword>Dyelasers</keyword><keyword>Laserresonators</keyword><keyword>Micro-opticaldevices</keyword><keyword>Microcavities</keyword><keyword>Laserbeams</keyword><keyword>Laserdyes</keyword><keyword>Opticalcomponents</keyword><keyword>Opticalfeedback</keyword><keyword>Visiblelight</keyword></keywords><dates><year>2018</year><pub-dates><date>2018/09/15</date></pub-dates></dates><publisher>OSA</publisher><urls><related-urls><url>/abstract.cfm?URI=ol-43-18-4461</url></related-urls></urls><electronic-resource-num>10.1364/OL.43.004461</electronic-resource-num></record></Cite></EndNote>[\o"Kong,2018#144"92]。针对不同的应用背景和需求,基于光子晶体光学微腔ADDINEN.CITEADDINEN.CITE.DATA[\o"Mozaffari,2017#146"93-96]和分布式反馈(DFB)微腔ADDINEN.CITEADDINEN.CITE.DATA[\o"Parafiniuk,2017#153"97-100]的光流控微腔激光器也随之产生。光流控光子晶体微腔激光器主要可以分为光子晶体缺陷模激光器ADDINEN.CITE<EndNote><Cite><Author>Mozaffari</Author><Year>2019</Year><RecNum>148</RecNum><DisplayText><styleface="superscript">[94]</style></DisplayText><record><rec-number>148</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1612163026">148</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Mozaffari,MohammadHazhir</author><author>Ebnali-Heidari,Majid</author><author>Moravvej-Farshi,MohammadKazem</author></authors></contributors><titles><title>Aproposalforultra-sensitiveintensity-basedbiosensingviaphotoniccrystaloptofluidicbiolaser</title><secondary-title>LaserPhysics</secondary-title></titles><periodical><full-title>LaserPhysics</full-title></periodical><pages>035803</pages><volume>29</volume><number>3</number><dates><year>2019</year><pub-dates><date>2019/02/19</date></pub-dates></dates><publisher>IOPPublishing</publisher><isbn>1054-660X 1555-6611</isbn><urls><related-urls><url>/10.1088/1555-6611/ab0370</url></related-urls></urls><electronic-resource-num>10.1088/1555-6611/ab0370</electronic-resource-num></record></Cite></EndNote>[\o"Mozaffari,2019#148"94]和光子晶体带边激光器ADDINEN.CITE<EndNote><Cite><Author>Arango</Author><Year>2007</Year><RecNum>149</RecNum><DisplayText><styleface="superscript">[95]</style></DisplayText><record><rec-number>149</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1612163219">149</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Arango,FelipeBernal</author><author>Christiansen,MadsBrokner</author><author>Gersborg-Hansen,Morten</author><author>Kristensen,Anders</author></authors></contributors><titles><title>Optofluidictuningofphotoniccrystalbandedgelasers</title><secondary-title>AppliedPhysicsLetters</secondary-title></titles><periodical><full-title>AppliedPhysicsLetters</full-title></periodical><volume>91</volume><number>22</number><dates><year>2007</year><pub-dates><date>Nov26</date></pub-dates></dates><isbn>0003-6951</isbn><accession-num>WOS:000251324600084</accession-num><urls><related-urls><url><GotoISI>://WOS:000251324600084</url></related-urls></urls><custom7>223503</custom7><electronic-resource-num>10.1063/1.2817610</electronic-resource-num></record></Cite></EndNote>[\o"Arango,2007#149"95]。光子晶体缺陷模激光器的谐振腔是光子晶体中的缺陷,腔模的谐振形成激光,伊朗IslamicAzad大学的M.Mozaffari等人在2017年设计了一种光子晶体缺陷模激光器,利用溶解于乙二醇的罗丹明6G溶液作为增益材料,实现了线宽为0.24nm的光流控激光输出,且能量转化效率高达25%ADDINEN.CITE<EndNote><Cite><Author>Mozaffari</Author><Year>2019</Year><RecNum>148</RecNum><DisplayText><styleface="superscript">[94]</style></DisplayText><record><rec-number>148</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1612163026">148</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Mozaffari,MohammadHazhir</author><author>Ebnali-Heidari,Majid</author><author>Moravvej-Farshi,MohammadKazem</author></authors></contributors><titles><title>Aproposalforultra-sensitiveintensity-basedbiosensingviaphotoniccrystaloptofluidicbiolaser</title><secondary-title>LaserPhysics</secondary-title></titles><periodical><full-title>LaserPhysics</full-title></periodical><pages>035803</pages><volume>29</volume><number>3</number><dates><year>2019</year><pub-dates><date>2019/02/19</date></pub-dates></dates><publisher>IOPPublishing</publisher><isbn>1054-660X 1555-6611</isbn><urls><related-urls><url>/10.1088/1555-6611/ab0370</url></related-urls></urls><electronic-resource-num>10.1088/1555-6611/ab0370</electronic-resource-num></record></Cite></EndNote>[\o"Mozaffari,2019#148"94]。光子晶体带边激光器没有传统意义上的谐振腔,它是利用光子晶体在布里渊区边界的特殊点处(能带边缘)形成驻波,使得光子态密度增强,从而大大提高模式增益。对于光流控DFB微腔激光器,是侧面发光的光流控微腔激光器,当光沿着通道传输时,通过微流体通道内置的布拉格光栅实现光反馈ADDINEN.CITEADDINEN.CITE.DATA[\o"Gersborg-Hansen,2006#157"101,\o"Song,2009#156"102]。加利福尼亚大学圣克鲁兹分校的T.Sano等人实现了以聚合物为基础的片上光流控DFB微腔激光器,采用罗丹明6G溶液作为增益介质时的阈值为52.7mW/cm2ADDINEN.CITE<EndNote><Cite><Author>Sano</Author><Year>2020</Year><RecNum>160</RecNum><DisplayText><styleface="superscript">[103]</style></DisplayText><record><rec-number>160</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1612179247">160</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Sano,Tyler</author><author>Black,Jennifer</author><author>Mitchell,Sarah</author><author>Zhang,Han</author><author>Schmidt,Holger</author></authors></contributors><titles><title>PneumaticallytunableoptofluidicDFBdyelaserusingcorrugatedsidewalls</title><secondary-title>OpticsLetters</secondary-title></titles><periodical><full-title>OpticsLetters</full-title><abbr-1>Opt.Lett.</abbr-1></periodical><pages>5978-5981</pages><volume>45</volume><number>21</number><dates><year>2020</year><pub-dates><date>Nov1</date></pub-dates></dates><isbn>0146-9592</isbn><accession-num>WOS:000585783800022</accession-num><urls><related-urls><url><GotoISI>://WOS:000585783800022</url></related-urls></urls><electronic-resource-num>10.1364/ol.404303</electronic-resource-num></record></Cite></EndNote>[\o"Sano,2020#160"103]。分布式反馈微腔激光器最大的特点是可实现光流控微腔激光器的动态单纵模窄线宽输出,且波长稳定性好,如复旦大学的L.Chen等人在2020年实现了单纵模可调谐的片上光流控DFB微腔激光器,该激光器由T形波导和两个脊形波导光栅构成,T波导为激光器提供光增益,两个脊形波导光栅选择输出激光波长,实现波长在大于450nm时以小于0.1nm的线宽连续调谐ADDINEN.CITE<EndNote><Cite><Author>Chen</Author><Year>2020</Year><RecNum>161</RecNum><DisplayText><styleface="superscript">[104]</style></DisplayText><record><rec-number>161</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1612180271">161</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Chen,Lin</author><author>Zhao,Chenming</author><author>Liu,Liying</author><author>Xu,Lei</author></authors></contributors><titles><title>Singlemodeoperationandultrawidetuningofon-chipoptofluidicdyelasers</title><secondary-title>LabonaChip</secondary-title></titles><periodical><full-title>LabonaChip</full-title></periodical><pages>3757-3762</pages><volume>20</volume><number>20</number><dates><year>2020</year><pub-dates><date>Oct21</date></pub-dates></dates><isbn>1473-0197</isbn><accession-num>WOS:000577744000004</accession-num><urls><related-urls><url><GotoISI>://WOS:000577744000004</url></related-urls></urls><electronic-resource-num>10.1039/d0lc00742k</electronic-resource-num></record></Cite></EndNote>[\o"Chen,2020#161"104]。除此之外,利用倏逝波特性构建微腔是实现光流控微腔激光器的研究热点。当光以大于临界角的方向由高折射率介质向低折射率介质入射时,在两种介质的交界面会发生全反射,但光仍会以倏逝波形式向低折射率介质传播一定深度,对于FP微腔、光子晶体微腔及DFB微腔,其Q值大约为104,而利用倏逝波构建的各种微腔,如微液滴ADDINEN.CITEADDINEN.CITE.DATA[\o"Aswathy,2021#162"105-115]、微环ADDINEN.CITEADDINEN.CITE.DATA[\o"Guo,2019#172"116-119]、微管ADDINEN.CITEADDINEN.CITE.DATA[\o"Wang,2019#178"120-125]、微瓶ADDINEN.CITEADDINEN.CITE.DATA[\o"Tang,2018#185"126,\o"Hou,2020#195"127]等WGM微腔,其Q值可以达到106,有些甚至达到109以上。其中石英毛细管微管腔具有微腔与微流体通道集成的优势而较为常用,起初,密苏里大学哥伦比亚分校的S.Shopova等人采用单根石英毛细光微管腔实现了阈值为1μJ/mm2光流控微腔激光器ADDINEN.CITE<EndNote><Cite><Author>Shopova</Author><Year>2007</Year><RecNum>192</RecNum><DisplayText><styleface="superscript">[128]</style></DisplayText><record><rec-number>192</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1612406616">192</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Shopova,SiykaI.</author><author>Zhou,Hongying</author><author>Fan,Xudong</author><author>Zhang,Po</author></authors></contributors><titles><title>Optofluidicringresonatorbaseddyelaser</title><secondary-title>AppliedPhysicsLetters</secondary-title></titles><periodical><full-title>AppliedPhysicsLetters</full-title></periodical><volume>90</volume><number>22</number><dates><year>2007</year><pub-dates><date>May28</date></pub-dates></dates><isbn>0003-6951</isbn><accession-num>WOS:000246909900001</accession-num><urls><related-urls><url><GotoISI>://WOS:000246909900001</url></related-urls></urls><custom7>221101</custom7><electronic-resource-num>10.1063/1.2743884</electronic-resource-num></record></Cite></EndNote>[\o"Shopova,2007#192"128],之后,耦合石英毛细管微腔光流控激光器被提出,比如利用石英毛细管微腔耦合微环腔或微管腔形成游标效应实现光流控激光器的单纵模输出ADDINEN.CITE<EndNote><Cite><Author>Tu</Author><Year>2012</Year><RecNum>198</RecNum><DisplayText><styleface="superscript">[129]</style></DisplayText><record><rec-number>198</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1612428552">198</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Tu,Xin</author><author>Wu,Xiang</author><author>Li,Ming</author><author>Liu,Liying</author><author>Xu,Lei</author></authors></contributors><titles><title>Ultravioletsingle-frequencycoupledoptofluidicringresonatordyelaser</title><secondary-title>OpticsExpress</secondary-title><alt-title>Opt.Express</alt-title></titles><periodical><full-title>OpticsExpress</full-title></periodical><pages>19996-20001</pages><volume>20</volume><number>18</number><keywords><keyword>Dyelasers</keyword><keyword>Opticalconfinementandmanipulation</keyword><keyword>Micro-opticaldevices</keyword><keyword>Resonators</keyword><keyword>Coupledmodetheory</keyword><keyword>Laserresonators</keyword><keyword>Ringresonators</keyword><keyword>Totalinternalreflection</keyword><keyword>Ultravioletlasers</keyword><keyword>Verticalcavitysurfaceemittinglasers</keyword></keywords><dates><year>2012</year><pub-dates><date>2012/08/27</date></pub-dates></dates><publisher>OSA</publisher><urls><related-urls><url>/abstract.cfm?URI=oe-20-18-19996</url></related-urls></urls><electronic-resource-num>10.1364/OE.20.019996</electronic-resource-num></record></Cite></EndNote>[\o"Tu,2012#198"129],或光流控毛细管微腔激光器作为耦合腔结构的光源,便于耦合微环腔的高阶径向模式激发ADDINEN.CITE<EndNote><Cite><Author>Ren</Author><Year>2017</Year><RecNum>196</RecNum><DisplayText><styleface="superscript">[130]</style></DisplayText><record><rec-number>196</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1612424166">196</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Ren,Liqiang</author><author>Zhang,Xingwang</author><author>Guo,Xuexue</author><author>Wang,Haotian</author><author>Wu,Xiang</author></authors></contributors><titles><title>High-sensitivityoptofluidicsensorbasedoncoupledliquid-corelaser</title><secondary-title>IEEEPhotonicsTechnologyLetters</secondary-title></titles><periodical><full-title>IEEEPhotonicsTechnologyLetters</full-title></periodical><pages>639-642</pages><volume>29</volume><number>8</number><dates><year>2017</year></dates><isbn>1041-1135</isbn><urls></urls></record></Cite></EndNote>[\o"Ren,2017#196"130]。但是,经过化学腐蚀处理所得的毛细管微腔,不仅变得脆弱,且处理后粗糙的表面结构还限制其品质因数的提高。从增益介质角度看,早期的光流控微腔激光器多以罗丹明等有机染料作为荧光材料实现激光出射,而随着材料科学的发展,不同性能、不同种类的荧光材料应运而生并逐渐增多,光流控微腔激光器的种类也随之变多。比如不同种类的量子点及荧光蛋白的产生,丰富了光流控微腔激光器的种类并使得光流控微腔激光器的稳定性等得以改善。2015年,美国密歇根大学X.Fan课题组分别采用水溶性量子点溶液及单层水溶性量子点作为增益介质,制作了毛细管谐振腔的光流控微腔激光器,由于量子点具有高荧光效率和高稳定性,在660nm波段形成了阈值分别为0.1μJ/mm2和60μJ/mm2的稳定激光发射ADDINEN.CITE<EndNote><Cite><Author>Kiraz</Author><Year>2015</Year><RecNum>119</RecNum><DisplayText><styleface="superscript">[76]</style></DisplayText><record><rec-number>119</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1611990875">119</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Kiraz,Alper</author><author>Chen,Qiushu</author><author>Fan,Xudong</author></authors></contributors><titles><title>OptofluidicLaserswithAqueousQuantumDots</title><secondary-title>ACSPhotonics</secondary-title></titles><periodical><full-title>ACSPhotonics</full-title></periodical><pages>707-713</pages><volume>2</volume><number>6</number><dates><year>2015</year><pub-dates><date>2015/06/17</date></pub-dates></dates><publisher>AmericanChemicalSociety</publisher><urls><related-urls><url>/10.1021/acsphotonics.5b00211</url></related-urls></urls><electronic-resource-num>10.1021/acsphotonics.5b00211</electronic-resource-num></record></Cite></EndNote>[\o"Kiraz,2015#119"76]。2019年,该课题组在熔融石英制成的环形凹槽上设计了片上量子点微腔激光器,通过将适当剂量的聚合物掺入量子点薄膜中,显着提高了激光光谱的光谱纯度,与嵌入在相同沟槽的染料微腔激光器相比,量子点激光器的使用寿命长10倍以上ADDINEN.CITE<EndNote><Cite><Author>Chen</Author><Year>2019</Year><RecNum>201</RecNum><DisplayText><styleface="superscript">[131]</style></DisplayText><record><rec-number>201</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1612441943">201</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Chen,Cong</author><author>Yuan,Jin</author><author>Wan,Lei</author><author>Chandrahalim,Hengky</author><author>Chen,Zhenshi</author><author>Nishimura,Naoya</author><author>Takeda,Harunobu</author><author>Yoshioka,Hiroaki</author><author>Liu,Weiping</author><author>Oki,Yuji</author><author>Fan,Xudong</author><author>Li,Zhaohui</author></authors></contributors><titles><title>Demonstrationofon-chipquantumdotmicrocavitylasersinamolecularlyengineeredannulargroove</title><secondary-title>OpticsLetters</secondary-title><alt-title>Opt.Lett.</alt-title></titles><periodical><full-title>OpticsLetters</full-title><abbr-1>Opt.Lett.</abbr-1></periodical><alt-periodical><full-title>OpticsLetters</full-title><abbr-1>Opt.Lett.</abbr-1></alt-periodical><pages>495-498</pages><volume>44</volume><number>3</number><keywords><keyword>Dyelasers</keyword><keyword>Fusedsilica</keyword><keyword>Lightsources</keyword><keyword>Microcavitylasers</keyword><keyword>Quantumdotlasers</keyword><keyword>Randomlasers</keyword></keywords><dates><year>2019</year><pub-dates><date>2019/02/01</date></pub-dates></dates><publisher>OSA</publisher><urls><related-urls><url>/abstract.cfm?URI=ol-44-3-495</url></related-urls></urls><electronic-resource-num>10.1364/OL.44.000495</electronic-resource-num></record></Cite></EndNote>[\o"Chen,2019#201"131]。荧光材料的多样性,促使不同材料之间发生能量转移,2016年,同是X.Fan课题组的科研人员利用量子点和Cy5分别作为供体和受体,毛细管作为谐振腔,实现了基于荧光共振能量转移机制的光流控微腔激光器,不仅降低了对泵浦激光的限制,还提高了目标荧光材料对泵浦光的吸收效率,很大程度上降低了光流控微腔激光器的阈值ADDINEN.CITE<EndNote><Cite><Author>Chen</Author><Year>2016</Year><RecNum>181</RecNum><DisplayText><styleface="superscript">[132]</style></DisplayText><record><rec-number>181</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1612187278">181</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Chen,Qiushu</author><author>Kiraz,Alper</author><author>Fan,Xudong</author></authors></contributors><titles><title>OptofluidicFRETlasersusingaqueousquantumdotsasdonors</title><secondary-title>LabonaChip</secondary-title></titles><periodical><full-title>LabonaChip</full-title></periodical><pages>353-359</pages><volume>16</volume><number>2</number><dates><year>2016</year><pub-dates><date>2016</date></pub-dates></dates><isbn>1473-0197</isbn><accession-num>WOS:000367953700016</accession-num><urls><related-urls><url><GotoISI>://WOS:000367953700016</url></related-urls></urls><electronic-resource-num>10.1039/c5lc01004g</electronic-resource-num></record></Cite></EndNote>[\o"Chen,2016#181"132]。荧光蛋白作为一种生物材料,随着生物技术的发展,其荧光效率被不断地提升,也被用作光流控微腔激光器的增益介质,2013年,X.Fan课题组的Q.Chen等人用两种荧光蛋白标记的多肽链作为荧光材料,利用荧光共振能量转移效应实现了基于荧光蛋白的光流控激光出射ADDINEN.CITE<EndNote><Cite><Author>Chen</Author><Year>2013</Year><RecNum>150</RecNum><DisplayText><styleface="superscript">[133]</style></DisplayText><record><rec-number>150</rec-number><foreign-keys><keyapp="EN"db-id="dtsfaeex9st5axets06paxfaefse0fzrs95f">150</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Chen,Q.</author><author>Zhang,X.</author><author>Sun,Y.</author><author>Ritt,M.</author><author>Sivaramakrishnan,S.</author><author>Fan,X.</author></authors></contributors><auth-address>DepartmentofBiomedicalEngineering,UniversityofMichigan,1101BealAve.,AnnArbor,MI48109,USA.</auth-address><titles><title>HighlysensitivefluorescentproteinFRETdetectionusingoptofluidiclasers</title><secondary-title>LabChip</secondary-title><alt-title>Labonachip</alt-title></titles><periodical><full-title>LabChip</full-title><abbr-1>Labonachip</abbr-1></periodical><alt-periodical><full-title>LabChip</full-title><abbr-1>Labonachip</abbr-1></alt-periodical><pages>2679-81</pages><volume>13</volume><number>14</number><keywords><keyword>EquipmentDesign</keyword><keyword>FluorescenceResonanceEnergyTransfer/*instrumentation/methods</keyword><keyword>GreenFluorescentProteins/genetics/metabolism</keyword><keyword>*Lasers</keyword><keyword>LuminescentProteins/genetics/*metabolism</keyword><keyword>Microfluidics/*instrumentation/methods</keyword><keyword>*OpticsandPhotonics</keyword><keyword>ProteinInteractionMapping/*instrumentation/methods</keyword></keywords><dates><year>2013</year><pub-dates><date>Jul21</date></pub-dates></dates><isbn>1473-0189(Electronic) 1473-0189(Linking)</isbn><accession-num>23545541</accession-num><urls><related-urls><url>/pubmed/23545541</url></related-urls></urls><electronic-resource-num>10.1039/c3lc50207d</electronic-resource-num></record></Cite></EndNote>[\o"Chen,2013#3"133]。同年,该课题组还利用荧光物质标记的具有四面体纳米结构的DNA进行实验,通过改变DNA的标记方式使激光器的阈值特性及激光效率发生变化ADDINEN.CITE<EndNote><Cite><Author>Chen</Author><Year>2013</Year><RecNum>152</RecNum><DisplayText><styleface="superscript">[134]</style></DisplayText><record><rec-number>152</rec-number><foreign-keys><keyapp="EN"db-id="dtsfaeex9st5axets06paxfaefse0fzrs95f">152</key><keyap

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论