网易游戏算法工程师面试题集_第1页
网易游戏算法工程师面试题集_第2页
网易游戏算法工程师面试题集_第3页
网易游戏算法工程师面试题集_第4页
网易游戏算法工程师面试题集_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026年网易游戏算法工程师面试题集一、算法基础(共5题,每题6分)1.题目:给定一个无序数组,设计一个时间复杂度为O(n)的算法,找出数组中第三大的数。如果数组中的最大数出现多次,则不考虑第三大的数。要求:写出伪代码和复杂度分析。2.题目:解释快速排序的平均时间复杂度为什么是O(nlogn),并说明在什么情况下快速排序可能退化到O(n²)。3.题目:设计一个算法,判断一个字符串是否是另一个字符串的子序列。例如,"abc"是"ahbgdc"的子序列,但"axc"不是。4.题目:给定两个链表,它们的每个节点代表一个数字,数字是逆序存储的(即个位在链表头部)。例如,链表1表示123,链表2表示456,求它们的和,并以链表形式返回。5.题目:解释什么是动态规划,并举一个游戏场景中的动态规划应用实例(如背包问题或最优路径选择)。答案与解析1.答案:plaintext伪代码:1.初始化三个变量:first,second,third,分别表示第一大、第二大、第三大的数,初始值设为负无穷。2.遍历数组:a.如果当前数>first:-third=second-second=first-first=当前数b.否则如果当前数>second:-third=second-second=当前数c.否则如果当前数>third:-third=当前数3.返回third,如果third仍为负无穷,说明数组中最大数出现多次,返回null。复杂度分析:时间复杂度O(n),只需遍历一次数组;空间复杂度O(1),仅使用常数个变量。2.解析:快速排序通过分治思想实现排序:选择一个基准值,将数组分为小于基准和大于基准的两部分,然后递归排序子数组。平均情况下,每次划分将数组分为接近相等的两部分,因此递归树的深度为logn,每层需要O(n)时间,总复杂度为O(nlogn)。退化情况:当基准值总是选择到数组的最小或最大值时,划分不平衡,递归树深度退化到n,导致时间复杂度变为O(n²)。3.答案:plaintext伪代码:functionisSubsequence(s,t):i=0,j=0whilei<len(s)andj<len(t):ifs[i]==t[j]:i+=1j+=1returni==len(s)解析:双指针方法,分别遍历s和t,当s[i]==t[j]时,移动s的指针;无论如何都移动t的指针。如果s全部匹配,则返回true。时间复杂度O(n+m),n和m分别为s和t的长度。4.答案:plaintext伪代码:functionaddTwoNumbers(l1,l2):dummy=ListNode(0)current=dummycarry=0whilel1orl2orcarry:val1=l1.valifl1else0val2=l2.valifl2else0sum=val1+val2+carrycarry=sum//10current.next=ListNode(sum%10)current=current.nextifl1:l1=l1.nextifl2:l2=l2.nextreturndummy.next解析:模拟加法过程,从链表尾部开始相加,处理进位。时间复杂度O(max(m,n)),m和n分别为两个链表的长度。5.答案:动态规划通过将问题分解为子问题并存储子问题的解(通常使用数组或哈希表)来避免重复计算。游戏场景中常见应用:-背包问题:给定物品的重量和价值,选择一定重量的背包能装下最大价值物品的组合。-最优路径选择:如棋盘游戏中的最小/最大移动步数,通过记录每一步的最优解来推导全局最优解。二、数据结构与设计(共4题,每题8分)1.题目:设计一个LRU(LeastRecentlyUsed)缓存,支持get和put操作,要求时间复杂度为O(1)。2.题目:解释什么是平衡二叉树(如AVL树),并说明为什么游戏场景中需要平衡二叉树(如角色等级管理)。3.题目:设计一个算法,将一个有序数组转换为二叉搜索树(BST),要求二叉树的高度尽可能平衡。4.题目:给定一个图,设计一个算法找出所有强连通分量(SCC)。答案与解析1.答案:LRUCache可以通过双向链表+哈希表实现:-双向链表:头部为最近使用,尾部为最久未使用。-哈希表:快速查找缓存项在链表中的位置。plaintext伪代码:classLRUCache:def__init__(self,capacity):self.capacity=capacityself.cache={}self.head,self.tail=Node(0,0),Node(0,0)self.head.next=self.tailself.tail.prev=self.headdefget(self,key):ifkeyinself.cache:node=self.cache[key]self._move_to_head(node)returnnode.valuereturn-1defput(self,key,value):ifkeyinself.cache:node=self.cache[key]node.value=valueself._move_to_head(node)else:iflen(self.cache)==self.capacity:self._remove_tail()new_node=Node(key,value)self.cache[key]=new_nodeself._add_to_head(new_node)def_move_to_head(self,node):self._remove_node(node)self._add_to_head(node)def_remove_node(self,node):node.prev.next=node.nextnode.next.prev=node.prevdef_add_to_head(self,node):node.next=self.head.nextnode.next.prev=nodenode.prev=self.headself.head.next=nodedef_remove_tail(self):tail=self.tail.prevself._remove_node(tail)delself.cache[tail.key]解析:时间复杂度O(1)得益于哈希表和双向链表的结合。2.答案:平衡二叉树(如AVL树)是每个节点的左右子树高度差的绝对值不超过1的BST。游戏场景中需要:-角色等级管理:快速插入/删除等级,平衡树保证操作效率。-物品分类:动态调整物品优先级时,平衡树避免性能退化。退化情况:普通BST在顺序插入时高度为n,而AVL树高度为O(logn)。3.答案:将有序数组转换为平衡BST:-中位数法:选择数组中间元素作为根,递归对左右子数组进行相同操作。plaintext伪代码:functionsortedArrayToBST(nums):ifnotnums:returnNonemid=len(nums)//2root=TreeNode(nums[mid])root.left=sortedArrayToBST(nums[:mid])root.right=sortedArrayToBST(nums[mid+1:])returnroot解析:时间复杂度O(n),每个节点只处理一次。4.答案:Kosaraju算法找SCC:-第一步:对图进行DFS,按完成时间排序顶点。-第二步:以相反顺序进行DFS,每次访问的强连通分量即为SCC。plaintext伪代码:functionfindSCC(graph):order=[]visited=set()defdfs1(node):ifnodenotinvisited:visited.add(node)forneighboringraph[node]:dfs1(neighbor)order.append(node)fornodeingraph:dfs1(node)scc=[]visited.clear()defdfs2(node,component):ifnodenotinvisited:visited.add(node)component.append(node)forneighboringraph[node]:dfs2(neighbor,component)fornodeinreversed(order):ifnodenotinvisited:component=[]dfs2(node,component)scc.append(component)returnscc解析:时间复杂度O(V+E),适用于游戏地图的NPC关系分析。三、系统设计(共3题,每题10分)1.题目:设计一个游戏排行榜系统,支持实时更新分数和按分数查询排名。2.题目:设计一个高并发消息推送系统,要求支持百万级用户同时接收消息。3.题目:设计一个游戏内物品交易系统,要求支持防作弊(如检测虚拟货币溢出)。答案与解析1.答案:排行榜系统设计:-数据结构:使用跳表(SkipList)或堆(Heap)存储分数和用户ID,支持O(logn)查询和更新。-实现:plaintextclassLeaderboard:def__init__(self):self.data={}#用户ID->分数self.heap=MinHeap()#使用最小堆按分数排序defaddScore(self,userId,score):ifuserIdinself.data:oldScore=self.data[userId]self.heap.remove(userId)self.heap.add(userId,score)self.data[userId]=scoreelse:self.heap.add(userId,score)self.data[userId]=scoredeftopK(self,k):return[self.heap.peek(k)for_inrange(k)]-优化:排行榜分区间存储,如前1000名使用堆,后1000名使用有序数组,减少频繁更新开销。2.答案:高并发消息推送系统:-架构:-消息队列(如Kafka/RocketMQ):异步处理,防抖动。-缓存(Redis):缓存用户在线状态,减少数据库压力。-分发服务:按区域或设备分片,负载均衡。-防延迟:使用WebSocket或Server-SentEvents(SSE)实时推送。-限流:令牌桶算法控制并发消息量,避免服务器过载。3.答案:防作弊设计:-虚拟货币溢出检测:plaintextfunctionsafeAdd(userId,amount):current=getBalance(userId)newBalance=current+amountifnewBalance<0ornewBalance>MAX_BALANCE:throwError("Balanceoverflow")setBalance(userId,newBalance)-交易记录:-每次交易写入区块链或不可变日志,防篡改。-使用签名验证交易发起者身份。-风控系统:检测异常交易模式(如短时间内大量交易)。四、机器学习与深度学习(共3题,每题8分)1.题目:解释过拟合和欠拟合的区别,并说明如何通过数据增强缓解过拟合(以游戏AI为例)。2.题目:设计一个游戏皮肤推荐系统,要求考虑用户偏好和社交关系。3.题目:解释DQN(DeepQ-Network)的原理,并说明其在游戏AI中的应用场景。答案与解析1.答案:-过拟合:模型对训练数据过度拟合,泛化能力差。-欠拟合:模型过于简单,未能捕捉数据规律。数据增强:游戏AI中,通过旋转/翻转游戏截图、调整光照条件等方式扩充训练数据,使AI更鲁棒。2.答案:推荐系统设计:-协同过滤:基于用户历史行为和相似用户偏好推荐(如“玩家A喜欢皮肤X,玩家B也喜欢X,推荐给玩家A”)。-内容推荐:根据皮肤属性(颜色、风格)匹配用户偏好。-社交关系:加入好友推荐权重,如“好友喜欢的皮肤优先推荐”。3.答案:DQN原理:-使用深度神经网络逼近Q值函数(状态-动作价值)。-通过经验回放(随机抽样)和目标网络缓解梯度震荡。应用:如《王者荣耀》的AI对局训练,通过学习人类玩家策略提升AI水平。五、综合编程(共2题,每题12分)1.题目:给定一个字符串,设计一个算法判断它是否是有效的括号组合(如"()[]{}")。2.题目:设计一个算法找出所有三个数的组合,使其和为特定值(如[-1,0,1,2]和为0)。答案与解析1.答案:plaintext伪代码:functionisValidParentheses(s):stack=[]mapping={'(':')','[':']','{':'}'}forcharins:ifcharinmapping:stack.append(char)else:ifnot

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论