版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省临汾同盛实验中学2026届数学高二上期末综合测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.平行六面体中,若,则()A. B.1C. D.2.若抛物线x=﹣my2的焦点到准线的距离为2,则m=()A.﹣4 B.C. D.±3.为了解义务教育阶段学校对双减政策的落实程度,某市教育局从全市义务教育阶段学校中随机抽取了6所学校进行问卷调查,其中有4所小学和2所初级中学,若从这6所学校中再随机抽取两所学校作进一步调查,则抽取的这两所学校中恰有一所小学的概率是()A. B.C. D.4.已知,,则的最小值为()A. B.C. D.5.已知,,,则的大小关系是()A. B.C. D.6.双曲线的渐近线方程为()A. B.C. D.7.下列关系中,正确的是()A. B.C. D.8.已知数列中,,,是的前n项和,则()A. B.C. D.9.已知直线在两个坐标轴上的截距之和为7,则实数m的值为()A.2 B.3C.4 D.510.命题:,的否定为()A., B.不存在,C., D.,11.设是定义在R上的可导函数,若(为常数),则()A. B.C. D.12.已知数列为等比数列,若,则的值为()A.-4 B.4C.-2 D.2二、填空题:本题共4小题,每小题5分,共20分。13.若椭圆的焦点在轴上,过点作圆的切线,切点分别为,,直线恰好经过椭圆的上焦点和右顶点,则椭圆的方程是________________14.已知直线与直线平行,则实数m的值为______15.若“”是真命题,则实数的最小值为_____________.16.已知圆,圆,则两圆的公切线条数是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知是抛物线的焦点,点在抛物线上,且.(1)求的方程;(2)过上一动点作的切线交轴于点.判断线段的中垂线是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.18.(12分)阿基米德(公元前年—公元前年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴与短半轴的乘积.已知平面直角坐标系中,椭圆:的面积为,两焦点与短轴的一个顶点构成等边三角形.(1)求椭圆的标准方程;(2)过点的直线与交于不同的两点,求面积的最大值.19.(12分)已知甲组数据的茎叶图如图所示,其中数据的整数部分为茎,数据的小数部分(仅一位小数)为叶,例如第一个数据为5.3(1)求:甲组数据的平均值、方差、中位数;(2)乙组数据为,且甲、乙两组数据合并后的30个数据的平均值为,方差为,求:乙组数据的平均值和方差,写出必要的计算步骤.参考公式:平均值,方差20.(12分)已知函数(1)若在点处的切线与轴平行,求的值;(2)当时,求证:;(3)若函数有两个零点,求的取值范围21.(12分)在2016珠海航展志愿服务开始前,团珠海市委调查了北京师范大学珠海分校某班50名志愿者参加志愿服务礼仪培训和赛会应急救援培训的情况,数据如下表:单位:人参加志愿服务礼仪培训未参加志愿服务礼仪培训参加赛会应急救援培训88未参加赛会应急救援培训430(1)从该班随机选1名同学,求该同学至少参加上述一个培训的概率;(2)在既参加志愿服务礼仪培训又参加赛会应急救援培训的8名同学中,有5名男同学A,A,A,A,A名女同学B,B,B现从这5名男同学和3名女同学中各随机选1人,求A被选中且B未被选中的概率.22.(10分)设椭圆:的左顶点为,右顶点为.已知椭圆的离心率为,且以线段为直径的圆被直线所截得的弦长为.(1)求椭圆的标准方程;(2)设过点的直线与椭圆交于点,且点在第一象限,点关于轴对称点为点,直线与直线交于点,若直线斜率大于,求直线的斜率的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据空间向量的运算,表示出,和已知比较可求得的值,进而求得答案.【详解】在平行六面体中,有,故由题意可知:,即,所以,故选:D.2、D【解析】把抛物线的方程化为标准方程,由焦点到准线的距离为,即可得到结果,得到答案.【详解】由题意,抛物线,可得,又由抛物线的焦点到准线的距离为2,即,解得.故选D.【点睛】本题主要考查了抛物线的标准方程,以及简单的几何性质的应用,其中解答中熟记抛物线的焦点到准线的距离为是解答的关键,着重考查了推理与计算能力,属于基础题.3、A【解析】由组合知识结合古典概型概率公式求解即可.【详解】从这6所学校中随机抽取两所学校的情况共有种,这两所学校中恰有一所小学的情况共有种,则其概率为.故选:A4、B【解析】将代数式展开,然后利用基本不等式可求出该代数式的最小值.【详解】,,由基本不等式得,当且仅当时,等号成立.因此,的最小值为.故选B.【点睛】本题考查利用基本不等式求最值,在利用基本不等式时要注意“一正、二定、三相等”条件的成立,考查计算能力,属于中等题.5、B【解析】利用微积分基本定理计算,利用积分的几何意义求扇形面积得到,然后比较大小.【详解】,表示以原点为圆心,半径为2的圆在第二象限的部分的面积,∴;,∵e=2.71828…>2.7,,,,故选:6、B【解析】把双曲线的标准方程中的1换成0,可得其渐近线的方程【详解】双曲线的渐近线方程是,即,故选B【点睛】本题考查了双曲线的标准方程与简单的几何性质等知识,属于基础题7、B【解析】根据对数函数的性质判断A,根据指数函数的性质判断B,根据正弦函数的性质及诱导公式判断C,根据余弦函数的性质及诱导公式判断D;【详解】解:对于A:因为,,,故A错误;对于B:因为在定义域上单调递减,因为,所以,又,,因为在上单调递增,所以,所以,所以,故B正确;对于C:因为在上单调递减,因为,所以,又,所以,故C错误;对于D:因为在上单调递减,又,所以,又,所以,故D错误;故选:B8、D【解析】由,得到为递增数列,又由,得到,化简,即可求解.【详解】解:由,得,又,所以,所以,即,所以数列为递增数列,所以,得,即,又由是的前项和,则.故选:D.【点睛】关键点睛:本题考查数列求和问题,关键在于由已知条件得出,运用裂项相消求和法.9、C【解析】求出直线方程在两坐标轴上的截距,列出方程,求出实数m的值.【详解】当时,,故不合题意,故,,令得:,令得:,故,解得:.故选:C10、D【解析】含有量词的命题的否定方法:先改变量词,然后再否定结论即可【详解】解:命题:,的否定为:,故选:D11、C【解析】根据导数的定义即可求解.【详解】.故选:C.12、B【解析】根据,利用等比数列的通项公式求解.【详解】因为,所以,则,解得,所以.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设过点的圆的切线为,分类讨论求得直线分别与圆的切线,求得直线的方程,从而得到直线与轴、轴的交点坐标,得到椭圆的右焦点和上顶点,进而求得椭圆的方程.【详解】设过点的圆的切线分别为,即,当直线与轴垂直时,不存在,直线方程为,恰好与圆相切于点;当直线与轴不垂直时,原点到直线的距离为,解得,此时直线的方程为,此时直线与圆相切于点,因此,直线的斜率为,直线的方程为,所以直线交轴交于点,交于轴于点,椭圆的右焦点为,上顶点为,所以,可得,所以椭圆的标准方程为.故答案为:.14、【解析】由两直线平行的判定可得求解即可,注意验证是否出现直线重合的情况.【详解】由题设,,解得,经检验满足题设.故答案为:15、1【解析】若“”是真命题,则大于或等于函数在的最大值因为函数在上为增函数,所以,函数在上的最大值为1,所以,,即实数的最小值为1.所以答案应填:1.考点:1、命题;2、正切函数的性质.16、【解析】首先把圆的一般方程化为标准方程,进一步求出两圆的位置关系,可得两圆的公切线条数.【详解】解:由圆,可得:,可得其圆心为,半径为;由,可得,可得其圆心为,半径为2;所以可得其圆心距为:,可得:,故两圆相交,其公切线条数为,故答案为:2.【点睛】本题主要考查两圆的位置关系及两圆公切线条数的判断,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)过定点,定点为【解析】(1)利用抛物线的定义求解;(2)设直线的方程为,,与抛物线方程联立,根据直线与抛物线C相切,由求得,再得到,写出线段的中垂线方程求解.【小问1详解】解:由题意得,,解得=2p,因为点M(,4)在抛物线C上,所以42=2p=4p2,解得p=2,所以抛物线C的标准方程为.【小问2详解】由已知得,直线的斜率存在且不为0,所以设直线的方程为,与抛物线方程联立并消去得:,因为直线与抛物线C相切,所以,得,,所以,得,在中,令得,所以,所以线段中点为,线段的中垂线方程为,所以线段的中垂线过定点.18、(1);(2).【解析】(1)根据题意计算得到,得到椭圆方程.(2)设直线的方程为,联立方程,根据韦达定理得到,,表示出,解得答案.【详解】(1)依题意有解得所以椭圆的标准方程是.(2)由题意直线的斜率不能为,设直线的方程为,由方程组得,设,,所以,,所以,所以,令(),则,,因为在上单调递增,所以当,即时,面积取得最大值为.【点睛】本题考查了椭圆方程,椭圆内三角形面积的最值问题,意在考查学生的计算能力和综合应用能力.19、(1),,;(2),.【解析】(1)根据茎叶图求平均值,再由方差与均值的关系求,将茎叶图中的数据从小到大排列确定中位数M.(2)由甲乙平均数及(1)的结果列方程求乙组数据的平均值,再由方差与均值的关系列方程组求出,进而求方差.【小问1详解】,∴,由茎叶图知:数据从小到大排列为∴.【小问2详解】由题意,,又,因此.20、(1);(2)证明见解析;(3).【解析】(1)由可求得实数的值;(2)利用导数分析函数的单调性,求得,即可证得结论成立;(3)分析可知在上存在唯一的极值点,且,可得出,构造函数,分析函数的单调性,求得的取值范围,再构造,分析函数的单调性,求出的范围,即可得出的取值范围.【小问1详解】解:因为的定义域为,.由题意可得,解得.【小问2详解】证明:当时,,该函数的定义域为,,令,其中,则,故函数在上递减,因为,,所以,存在,使得,则,且,当时,,函数单调递增,当时,,函数单调递减,所以,,所以,当时,.【小问3详解】解:函数的定义域为,.令,其中,则,所以,函数单调递减,因为函数有两个零点,等价于函数在上存在唯一的极值点,且为极大值点,且,即,所以,,令,其中,则,故函数在上单调递增,又因为,由,可得,构造函数,其中,则,所以,函数在上单调递增,故,因此,实数的取值范围是.【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明(或),进而构造辅助函数;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.21、(1);(2).【解析】(1)根据表中数据知未参加志愿服务礼仪培训又未参加赛会应急救援培训的有30人,故至少参加上述一个培训的共有人.从而求得概率;(2)从这5名男同学和3名女同学中各随机选1人,列出其一切可能的结果,从而求得被选中且未被选中的概率.【详解】解:由调查数据可知,既未参加志愿服务礼仪培训又未参加赛会应急救援培训的有30人,故至少参加上述一个培训的共有人.从该班随机选1名同学,该同学至少参加上述一个培训的概率为;从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的基本事件有:,,,共15个,根据题意,这些基本事件的出现是等可能的,事件“被选中且未被选中”所包含的基本事件有:,共2个,被选中且
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年信息化施工管理合同
- 2025年在线教育平台搭建可行性研究报告
- 2025年特色小镇开发与建设项目可行性研究报告
- 2025年农田灌溉智能监控系统项目可行性研究报告
- 2025年生态友好型农业示范项目可行性研究报告
- 2025年面向未来的城市生态公园项目可行性研究报告
- 消毒锅租赁协议书
- 乙方解除协议书
- 紫苏种植合同范本
- 港口转让协议合同
- 脑炎的护理课件
- 胎头吸引技术课件
- 电池PACK箱体项目可行性研究报告(备案审核模板)
- 贵州省2023年7月普通高中学业水平合格性考试地理试卷(含答案)
- 实施“十五五”规划的发展思路
- 东航心理测试题及答案
- 资金无偿赠予协议书
- 课件王思斌:社会工作概论
- 2025年度交通运输安全生产费用使用计划
- 防水工程验收单
- 2025年高考数学总复习《立体几何》专项测试卷及答案
评论
0/150
提交评论