江苏省盐城市滨海县八滩中学2026届高二数学第一学期期末综合测试试题含解析_第1页
江苏省盐城市滨海县八滩中学2026届高二数学第一学期期末综合测试试题含解析_第2页
江苏省盐城市滨海县八滩中学2026届高二数学第一学期期末综合测试试题含解析_第3页
江苏省盐城市滨海县八滩中学2026届高二数学第一学期期末综合测试试题含解析_第4页
江苏省盐城市滨海县八滩中学2026届高二数学第一学期期末综合测试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省盐城市滨海县八滩中学2026届高二数学第一学期期末综合测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列命题中正确的个数为()①若向量,与空间任意向量都不能构成基底,则;②若向量,,是空间一组基底,则,,也是空间的一组基底;③为空间一组基底,若,则;④对于任意非零空间向量,,若,则A.1 B.2C.3 D.42.从某个角度观察篮球(如图1),可以得到一个对称的平面图形,如图2所示,篮球的外轮形为圆O,将篮球表面的粘合线看成坐标轴和双曲线,若坐标轴和双曲线与圆O的交点将圆O的周长八等分,AB=BC=CD,则该双曲线的离心率为()A. B.C. D.3.已知是定义在上的函数,其导函数为,且,且,则不等式的解集为()A. B.C. D.4.直线且的倾斜角为()A. B.C. D.5.已知是空间的一个基底,若,,若,则()A B.C.3 D.6.在四棱锥中,底面是正方形,为的中点,若,则()A. B.C. D.7.在x轴与y轴上截距分别为,2的直线的倾斜角为()A.45° B.135°C.90° D.180°8.设实系数一元二次方程在复数集C内的根为、,则由,可得.类比上述方法:设实系数一元三次方程在复数集C内的根为,则的值为A.﹣2 B.0C.2 D.49.经过两点直线的倾斜角是()A. B.C. D.10.已知数列满足:对任意的均有成立,且,,则该数列的前2022项和()A0 B.1C.3 D.411.已知双曲线的左、右焦点分别为,,P为双曲线C上一点,,直线与y轴交于点Q,若,则双曲线C的渐近线方程为()A. B.C. D.12.一组“城市平安建设”的满意度测评结果,,…,的平均数为116分,则,,…,,116的()A.平均数变小 B.平均数不变C.标准差不变 D.标准差变大二、填空题:本题共4小题,每小题5分,共20分。13.已知数列的前n项和为,则______14.直线的一个法向量________.15.棱长为的正方体的顶点到截面的距离等于__________.16.如图,椭圆的中心在坐标原点,是椭圆的左焦点,分别是椭圆的右顶点和上顶点,当时,此类椭圆称为“黄金椭圆”,则“黄金椭圆”的离心率___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)当时,求曲线在点(0,f(0))处的切线方程;(2)若存在,使得不等式成立,求m的取值范围18.(12分)已知函数,.(1)若,求曲线在点处的切线方程;(2)若函数在上是减函数,求实数的取值范围.19.(12分)已知定圆,过的一条动直线与圆相交于、两点,(1)当与定直线垂直时,求出与的交点的坐标,并证明过圆心;(2)当时,求直线的方程20.(12分)已知函数(Ⅰ)求的单调区间和最值;(Ⅱ)设,证明:当时,21.(12分)已知函数.(1)讨论函数的单调性;(2)若函数有两个不同的零点,求实数的取值范围.22.(10分)设函数.(1)讨论函数在区间上的单调性;(2)函数,若对任意的,总存在使得,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据题意、空间向量基底的概念和共线的运算即可判断命题①②③,根据空间向量的平行关系即可判断命题④.【详解】①:向量与空间任意向量都不能构成一个基底,则与共线或与其中有一个为零向量,所以,故①正确;②:由向量是空间一组基底,则空间中任意一个向量,存在唯一的实数组使得,所以也是空间一组基底,故②正确;③:由为空间一组基底,若,则,所以,故③正确;④:对于任意非零空间向量,,若,则存在一个实数使得,有,又中可以有为0的,分式没有意义,故④错误.故选:C2、D【解析】设出双曲线方程,通过做标准品和双曲线与圆O的交点将圆的周长八等分,且AB=BC=CD,推出点在双曲线上,然后求出离心率即可.【详解】设双曲线的方程为,则,因为AB=BC=CD,所以,所以,因为坐标轴和双曲线与圆O的交点将圆O的周长八等分,所以在双曲线上,代入可得,解得,所以双曲线的离心率为.故选:D3、B【解析】令,再结合,和已知条件将问题转化为,最后结合单调性求解即可.【详解】解:令,则,因为,所以,即函数为上的增函数,因为,不等式可化为,所以,故不等式的解集为故选:B4、C【解析】由直线方程可知其斜率,根据斜率和倾斜角关系可得结果.【详解】直线方程可化为:,直线的斜率,直线的倾斜角为.故选:C.5、C【解析】由,可得存在实数,使,然后将代入化简可求得结果【详解】,,因为,所以存在实数,使,所以,所以,所以,得,,所以,故选:C6、C【解析】由为的中点,根据向量的运算法则,可得,即可求解.【详解】由底面是正方形,E为的中点,且,根据向量的运算法则,可得.故选:C.7、A【解析】按照斜率公式计算斜率,即可求得倾斜角.【详解】由题意直线过,设直线斜率为,倾斜角为,则,故.故选:A.8、A【解析】用类比推理得到,再用待定系数法得到,,再根据求解.【详解】,由对应系数相等得:,.故选:A.【点睛】本题主要考查合情推理以及待定系数法,还考查了转化化归的思想和逻辑推理的能力,属于中档题.9、B【解析】求出直线的斜率后可得倾斜角【详解】经过两点的直线的斜率为,设该直线的倾斜角为,则,又,所以.故选:B10、A【解析】根据可知,数列具有周期性,即可解出【详解】因为,所以,即,所以数列中的项具有周期性,,由,,依次对赋值可得,,一个周期内项的和为零,而,所以数列的前2022项和故选:A11、B【解析】由题意可设且,即得a、b的数量关系,进而求双曲线C的渐近线方程.【详解】由题设,,,又,P为双曲线C上一点,∴,又,为的中点,∴,即,∴双曲线C的渐近线方程为.故选:B.12、B【解析】利用平均数、方差的定义和性质直接求出,,…,,116的平均数、方差从而可得答案.【详解】,,…,的平均数为116分,则,,…,,116的平均数为设,,…,的方差为则所以则,,…,,116的方差为所以,,…,,116的平均数不变,方差变小.标准差变小.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先通过裂项相消求出,再代入计算即可.【详解】,则,故.故答案为:3.14、(答案不唯一)【解析】根据给定直线方程求出其方向向量,再由法向量意义求解作答.【详解】直线的方向向量为,而,所以直线的一个法向量.故答案为:15、【解析】根据勾股定理可以计算出,这样得到是直角三角形,利用等体积法求出点到的距离.【详解】解:如图所示,在三棱锥中,是三棱锥的高,,在中,,,,所以是直角三角形,,设点到的距离为,.故A到平面的距离为故答案为:【点睛】本题考查了点到线的距离,利用等体积法求出点到面的距离.是解题的关键.16、或【解析】写出,,求出,根据以及即可求解,【详解】由题意,,,所以,,因为,则,即,即,所以,即,解得或(舍).故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用导数求出切线斜率,即可求出切线方程;(2)把题意转化为:存在,使得不等式成立,构造新函数,对m进行分类讨论,利用导数求,解不等式,即可求出m的范围.【小问1详解】当时,,定义域为R,.所以,.所以曲线在点(0,f(0))处的切线方程为:,即.【小问2详解】不等式可化为:,即存在,使得不等式成立.构造函数,则.①当时,恒成立,故在上单调递增,故,解得:,故;②当时,令,解得:令,解得:故在上单调递减,在上单调递增,又,故,解得:,这与相矛盾,舍去;③当时,恒成立,故在上单调递减,故,不符合题意,应舍去.综上所述:m的取值范围为:.18、(1).(2).【解析】分析:(1)由和可由点斜式得切线方程;(2)由函数在上是减函数,可得在上恒成立,,由二次函数的性质可得解.详解:(1)当时,所以,所以曲线在点处的切线方程为.(2)因为函数在上是减函数,所以在上恒成立.做法一:令,有,得故.实数的取值范围为做法二:即在上恒成立,则在上恒成立,令,显然在上单调递减,则,得实数的取值范围为点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立;(3)若恒成立,可转化为(需在同一处取得最值).19、(1),证明见解析;(2)或.【解析】(1)根据题意可设直线的方程为,将点的坐标代入直线的方程,可求得的值,再将直线、的方程联立,可得出这两条直线的交点的坐标,将圆心的坐标代入直线的方程可证得结论成立;(2)利用勾股定理可求得圆心到直线的距离,对直线的斜率是否存在进行分类讨论,设出直线方程,利用点到直线的距离公式求出参数的值,即可得出直线的方程.【小问1详解】解:当直线与定直线垂直时,可设直线的方程为,将点的坐标代入直线的方程可得,则,此时,直线的方程为,联立可得,即点,圆心的坐标为,因为,故直线过圆心.【小问2详解】解:设圆心到直线的距离为,则.当直线的斜率不存在时,直线的方程为,此时圆心到直线的距离为,合乎题意;当直线的斜率存在时,可设直线的方程为,即,由题意可得,解得,此时直线的方程为,即.综上所述,直线的方程为或.20、(Ⅰ)单调递减区间为,单调递增区间为;最小值为,无最大值;(Ⅱ)证明见解析【解析】(Ⅰ)根据导函数的正负即可确定单调区间,由单调性可得最值点;(Ⅱ)构造函数,利用导数可确定单调性,结合的正负可确定的零点的范围,进而得到结论.【详解】(Ⅰ)由题意得:定义域为,,当时,;当时,;的单调递减区间为,单调递增区间为的最小值为,无最大值(Ⅱ)设,则,令得:当时,;当时,,在上单调递增;在上单调递减由(Ⅰ)知:,可得:,,可得:,即又,当时,,即当时,【点睛】思路点睛:本题考查导数在研究函数中的应用,涉及到函数单调性和最值的求解、利用导数证明不等式等知识;利用导数证明不等式的关键是能够通过移项构造的方式,构造出新的函数,通过的单调性,结合零点所处的范围可分析得到结果.21、(1)答案见解析(2)【解析】(1)求函数的定义域及导函数,根据导数与函数的单调性关系判断函数的单调性;(2)结合已知条件,根据函数的单调性,极值结合零点存在性定理列不等式求实数的取值范围.【小问1详解】的定义域为,当时,恒成立,上单调递增,当时,在递减,在递增【小问2详解】当时,恒成立,上单调递增,所以至多存一个零点,不符题意,故舍去.当时,在递减,在递增;所以有极小值为构造函数,恒成立,所以在单调递减,注意到①当时,,则函数至多只有一个零点,不符题意,舍去.②当时,函数图象连续不间断,的极小值为,又函数在单调递减,所以在上存在唯一一个零点;,令,构造函数,恒成立.在单调递增,所以,即,所以函数在单调递增,所以在上存在唯一一个零点;当时,函数怡有两个零点,即在上各有一个零点.综上,函数有两个不同的零点,实数的取值范围为.【点睛】函数零点的求解与判断方法:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.22、(1)答案见解析;(2).【解析】(1)求导,根据导函数的正负性分类讨论进行求解即可;(2)根据

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论