2026届江苏省宿迁市宿迁中学高一数学第一学期期末预测试题含解析_第1页
2026届江苏省宿迁市宿迁中学高一数学第一学期期末预测试题含解析_第2页
2026届江苏省宿迁市宿迁中学高一数学第一学期期末预测试题含解析_第3页
2026届江苏省宿迁市宿迁中学高一数学第一学期期末预测试题含解析_第4页
2026届江苏省宿迁市宿迁中学高一数学第一学期期末预测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届江苏省宿迁市宿迁中学高一数学第一学期期末预测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.不等式的解集为,则实数的取值范围是()A. B.C. D.2.已知函数在上是增函数,则实数的取值范围是A. B.C. D.3.下列函数在其定义域内既是奇函数,又是增函数的是A. B.C. D.4.要得到函数的图象,只需的图象A.向左平移个单位,再把各点的纵坐标伸长到原来的倍(横坐标不变)B.向左平移个单位,再把各点的纵坐标缩短到原来的倍(横坐标不变)C.向左平移个单位,再把各点的纵坐标伸长到原来的倍(横坐标不变)D.向左平移个单位,再把各点的纵坐标伸长到原来的倍(横坐标不变)5.函数图象的一条对称轴是A. B.x=πC. D.x=2π6.青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录表的数据V的满足.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为()()A.1.5 B.1.2C.0.8 D.0.67.已知函数的部分图像如图所示,则正数A值为()A. B.C. D.8.若,则为()A. B.C. D.9.已知函数是定义在上的奇函数,,且,则()A. B.C. D.10.已知函数的部分图象如图所示,则函数图象的一个对称中心可能为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则______.12.已知函数是定义在上的奇函数,当时的图象如下所示,那么的值域是_______13.已知,则____________.(可用对数符号作答)14.如图,直四棱柱的底面是边长为1的正方形,侧棱长,则异面直线与的夹角大小等于______15.已知函数,则___________.16.若扇形AOB的圆心角为,周长为10+3π,则该扇形的面积为_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线和点,设过点且与平行的直线为.(1)求直线的方程;(2)求点关于直线的对称点18.已知圆过,,且圆心在直线上(1)求此圆的方程(2)求与直线垂直且与圆相切的直线方程(3)若点为圆上任意点,求的面积的最大值19.计算:(1)(2)20.已知函数(1)求的最小正周期;(2)将的图象上的各点________得到的图象,当时,方程有解,求实数m的取值范围在以下①、②中选择一个,补在(2)中的横线上,并加以解答,如果①、②都做,则按①给分.①向左平移个单位,再保持纵坐标不变,横坐标缩短到原来的一半②纵坐标保持不变,横坐标伸长到原来的2倍,再向右平移个单位21.直线过定点,交、正半轴于、两点,其中为坐标原点.(Ⅰ)当的倾斜角为时,斜边的中点为,求;(Ⅱ)记直线在、轴上的截距分别为,其中,求的最小值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】将不等式的解集为,转化为不等式的解集为R,分和两种情况讨论求解.【详解】因为不等式的解集为,所以不等式的解集为R,当,即时,成立;当,即时,,解得,综上:实数的取值范围是故选:C【点睛】本题主要考查一元二次不等式恒成立问题,还考查了分类讨论的思想和运算求解的能力,属于基础题.2、A【解析】当时,在上是增函数,且恒大于零,即当时,在上是减函数,且恒大于零,即,因此选A点睛:1.复合函数单调性的规则若两个简单函数的单调性相同,则它们的复合函数为增函数;若两个简单函数的单调性相反,则它们的复合函数为减函数.即“同增异减”

函数单调性的性质(1)若f(x),g(x)均为区间A上的增(减)函数,则f(x)+g(x)也是区间A上的增(减)函数,更进一步,即增+增=增,增-减=增,减+减=减,减-增=减;(2)奇函数在其关于原点对称的区间上单调性相同,偶函数在其关于原点对称的区间上单调性相反3、D【解析】分析:利用基本初等函数的单调性和奇偶性的定义,判定各选项中的函数是否满足条件即可.详解:对于A中,函数是定义域内的非奇非偶函数,所以不满足题意;对于B中,函数是定义域内的非奇非偶函数,所以不满足题意;对于C中,函数是定义域内的偶函数,所以不满足题意;对于D中,函数是定义域内的奇函数,也是增函数,所以满足题意,故选D.点睛:本题主要考查了基本初等函数的单调性与奇偶性的判定问题,其中熟记基本初等函数的单调性和奇偶性的判定方法是解答的关键,着重考查了推理与论证能力.4、D【解析】先将函数的解析式化为,再利用三角函数图象的变换规律得出正确选项.【详解】,因此,将函数的图象向左平移个单位,再把各点的纵坐标伸长到原来的倍(横坐标不变),可得到函数的图象,故选D.【点睛】本题考查三角函数的图象变换,处理这类问题的要注意以下两个问题:(1)左右平移指的是在自变量上变化了多少;(2)变换时两个函数的名称要保持一致.5、C【解析】利用函数值是否是最值,判断函数的对称轴即可【详解】当x时,函数cos2π=1,函数取得最大值,所以x是函数的一条对称轴故选C【点睛】对于函数由可得对称轴方程,由可得对称中心横坐标.6、C【解析】根据关系,当时,求出,再用指数表示,即可求解.【详解】由,当时,,则.故选:C.7、B【解析】根据图象可得函数的周期,从而可求,再根据对称轴可求,结合图象过可求.【详解】由图象可得,故,而时,函数取最小值,故,故,而,故,因为图象过,故,故,故选:B.8、A【解析】根据对数换底公式,结合指数函数与对数函数的单调性直接判断.【详解】由对数函数的单调性可知,即,且,,且,又,即,所以,又根据指数函数的单调性可得,所以,故选:A.9、C【解析】由得函数的周期性,由周期性变形自变量的值,最后由奇函数性质求得值【详解】∵是奇函数,∴,又,∴是周期函数,周期为4∴故选:C10、C【解析】先根据图象求出,得到的解析式,再根据整体代换法求出其对称中心,赋值即可得出答案【详解】由图可知,,,∴,∴当时,,即令,解得当时,可得函数图象的一个对称中心为故选:C.【点睛】本题主要通过已知三角函数的图像求解析式考查三角函数的性质,属于中档题.利用利用图象先求出周期,用周期公式求出,利用特殊点求出,正确求是解题的关键.求解析式时,求参数是确定函数解析式的关键,由特殊点求时,一定要分清特殊点是“五点法”的第几个点,用五点法求值时,往往以寻找“五点法”中的第一个点为突破口,“第一点”(即图象上升时与轴的交点)时;“第二点”(即图象的“峰点”)时;“第三点”(即图象下降时与轴的交点)时;“第四点”(即图象的“谷点”)时;“第五点”时.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用商数关系,由得到代入求解.【详解】方法一:,则.方法二:分子分母同除,得.故答案为:【点睛】本题主要考查同角三角函数基本关系式的应用,还考查了运算求解的能力,属于基础题.12、【解析】分析:通过图象可得时,函数的值域为,根据函数奇偶性的性质,确定函数的值域即可.详解:∵当时,函数单调递增,由图象知,当时,在,即此时函数也单调递增,且,∵函数是奇函数,∴,∴,即,∴的值域是,故答案为点睛:本题主要考查函数值域的求法,利用函数奇偶性的性质进行转化是解决本题的关键.13、【解析】根据对数运算法则得到,再根据对数运算法则及三角函数弦化切进行计算.【详解】∵,∴,又,.故答案为:14、【解析】由直四棱柱的底面是边长为1的正方形,侧棱长可得由知就是异面直线与的夹角,且所以=60°,即异面直线与的夹角大小等于60°.考点:1正四棱柱;2异面直线所成角15、【解析】利用函数的解析式由内到外逐层计算可得的值.【详解】因为,则,故.故答案为:.16、【解析】设扇形AOB的的弧长为l,半径为r,由已知可得l=3π,r=5,再结合扇形的面积公式求解即可.【详解】解:设扇形AOB的的弧长为l,半径为r,∴,l+2r=10+3π,∴l=3π,r=5,∴该扇形的面积S,故答案为:.【点睛】本题考查了扇形的弧长公式及扇形的面积公式,重点考查了方程的思想,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)x+2y-3=0(2)B(2,-2)【解析】(1)根据两直线平行则斜率相同,再将点代入即可求出直线的方程;(2)设出所求点的坐标,可表示出中点的坐标,再根据点关于直线的对称性质可得方程组,即可求出对称点的坐标.试题解析:(1)设,点代入∴:(2)设,则,的中点∴∴∴18、(1)(2)或(3)【解析】(1)一般利用待定系数法,先求出圆心的坐标,再求出圆的半径,即得圆的方程.(2)先设出直线的方程,再利用直线和圆相切求出其中的待定系数.(3)一般利用数形结合分析解答.当三角形的高是d+r时,三角形的面积最大.【详解】(1)易知中点为,,∴的垂直平分线方程为,即,联立,解得则,∴圆的方程为(2)知该直线斜率为,不妨设该直线方程为,由题意有,解得∴该直线方程为或(3),即,圆心到的距离∴点睛:本题的难点在第(3)问方法的选择,选择数形结合分析解答比较方便.数形结合是高中数学里一种重要的数学思想,在解题中要灵活运用.19、(1)(2)【解析】(1)根据分数指数幂的运算法则计算可得;(2)根据对数的运算法则及对数恒等式计算可得;【小问1详解】解:【小问2详解】解:20、(1);(2)答案见解析.【解析】(1)根据三角恒等变换化简,再求其最小正周期即可;(2)选择不同的条件,根据三角函数的图象变换求得的解析式,再求其在区间上的值域即可.【小问1详解】因为所以函数的最小正周期【小问2详解】若选择①,由(1)知,那么将图象上各点向左平移个单位,再保持纵坐标不变,横坐标缩短到原来的一半,得到当时,可得,,,由方程有解,可得实数m的取值范围为若选择②,由(1)知,那么将图象上各点纵坐标保持不变,横坐标伸

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论