吉林省白城市洮南十中2026届高二上数学期末质量跟踪监视模拟试题含解析_第1页
吉林省白城市洮南十中2026届高二上数学期末质量跟踪监视模拟试题含解析_第2页
吉林省白城市洮南十中2026届高二上数学期末质量跟踪监视模拟试题含解析_第3页
吉林省白城市洮南十中2026届高二上数学期末质量跟踪监视模拟试题含解析_第4页
吉林省白城市洮南十中2026届高二上数学期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省白城市洮南十中2026届高二上数学期末质量跟踪监视模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在直三棱柱中,,,,则异面直线与所成角的余弦值为()A. B.C. D.2.双曲线的两个焦点为,,双曲线上一点到的距离为8,则点到的距离为()A.2或12 B.2或18C.18 D.23.曲线的一个焦点F到两条渐近线的垂线段分别为FA,FB,O为坐标原点,若四边形OAFB是菱形,则双曲线C的离心率等于()A. B.C.2 D.4.如图,用4种不同的颜色对A,B,C,D四个区域涂色,要求相邻的两个区域不能用同一种颜色,则不同的涂色方法有()A.24种 B.48种C.72种 D.96种5.若,则的虚部为()A. B.C. D.6.如下图,边长为2的正方体中,O是正方体的中心,M,N,T分别是棱BC,,的中点,下列说法错误的是()A. B.C. D.到平面MON的距离为17.刘老师在课堂中与学生探究某个圆时,有四位同学分别给出了一个结论.甲:该圆经过点.乙:该圆半径为.丙:该圆的圆心为.丁:该圆经过点,如果只有一位同学的结论是错误的,那么这位同学是()A.甲 B.乙C.丙 D.丁8.某校开学“迎新”活动中要把3名男生,2名女生安排在5个岗位,每人安排一个岗位,每个岗位安排一人,其中甲岗位不能安排女生,则安排方法的种数为()A.72 B.56C.48 D.369.学校为了解学生在课外读物方面的支出情况,抽取了n位同学进行调查,结果显示这些同学的支出都在(单位:元)内,其中支出在(单位:元)内的同学有67人,其频率分布直方图如图所示,则n的值为()A.100 B.120C.130 D.39010.把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、丁4人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”的关系是()A.既不互斥也不对立 B.互斥又对立C.互斥但不对立 D.对立11.已知函数的定义域为,其导函数为,若,则下列式子一定成立的是()A. B.C. D.12.抛物线有如下光学性质:平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线的焦点为F,一条平行于y轴的光线从点射出,经过抛物线上的点A反射后,再经抛物线上的另一点B射出,则经点B反射后的反射光线必过点()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.命题“x≥1,x2-2x+4≥0”的否定为____________.14.已知点,,其中,若线段的中点坐标为,则直线的方程为________15.设、分别是椭圆的左、右焦点.若是该椭圆上的一个动点,则的最大值为_____16.以点为圆心,为半径的圆的标准方程是_____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在①直线l:是抛物线C的准线;②F是椭圆的一个焦点;③,对于C上的点A,的最小值为;在以上三个条件中任选一个,填到下面问题中的横线处,并完成解答.已知抛物线C:的焦点为F,满足_____(1)求抛物线C的标准方程;(2)是抛物线C上在第一象限内的一点,直线:与C交于M,N两点,若的面积为,求m的值18.(12分)已知直线l经过两条直线2x﹣y﹣3=0和4x﹣3y﹣5=0交点,且与直线x+y﹣2=0垂直(1)求直线l的方程;(2)若圆C过点(1,0),且圆心在x轴的正半轴上,直线l被该圆所截得的弦长为,求圆C的标准方程19.(12分)已知抛物线C:x2=2py的焦点为F,点N(t,1)在抛物线C上,且|NF|=.(1)求抛物线C的方程;(2)过点M(0,1)的直线l交抛物线C于不同的两点A,B,设O为坐标原点,直线OA,OB的斜率分别为k1,k2,求证:k1k2为定值.20.(12分)已知数列满足(1)证明:数列为等差数列,并求数列的通项公式;(2)设,求数列的前n项和21.(12分)在等差数列中,,前10项和(1)求列的通项公式;(2)若数列是首项为1,公比为2的等比数列,求的前8项和22.(10分)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC(2)设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】以为坐标原点,向量,,方向分别为、、轴建立空间直角坐标系,利用空间向量夹角公式进行求解即可.【详解】以为坐标原点,向量,,方向分别为、、轴建立空间直角坐标系,则,,,,所以,,,,,因此异面直线与所成角的余弦值等于.故选:D.2、C【解析】利用双曲线的定义求.【详解】解:由双曲线定义可知:解得或(舍)∴点到的距离为18,故选:C.3、A【解析】依题意可得为正方形,即可得到,从而得到双曲线的渐近线为,即可求出双曲线的离心率;【详解】解:依题意,,且四边形为菱形,所以为正方形,所以,即双曲线的渐近线为,即,所以;故选:A4、B【解析】按涂色顺序进行分四步,根据分步乘法计数原理可得解.【详解】按涂色顺序进行分四步:涂A部分时,有4种涂法;涂B部分时,有3种涂法;涂C部分时,有2种涂法;涂D部分时,有2种涂法.由分步乘法计数原理,得不同的涂色方法共有种.故选:B.5、A【解析】根据复数的运算化简,由复数概念即可求解.【详解】因为,所以的虚部为,故选:A6、D【解析】建立空间直角坐标系,进而根据空间向量的坐标运算判断A,B,C;对D,算出平面MON的法向量,进而求出向量在该法向量方向上投影的绝对值,即为所求距离.【详解】如图建立空间直角坐标系,则.对A,,则,则A正确;对B,,则,则B正确;对C,,则C正确;对D,设平面MON的法向量为,则,取z=1,得,,所以到平面MON的距离为,则D错误.故选:D.7、D【解析】分别假设甲、乙、丙、丁是错误的,看能否推出矛盾,进而推导出答案.【详解】假设甲的结论错误,根据丙和丁的结论,该圆的半径为6,与乙的结论矛盾;假设乙的结论错误,圆心到点的距离与圆心到点的距离不相等,不成立;假设丙的结论错误﹐点到点的距离大于,不成立;假设丁的结论错误,圆心到点的距离等于,成立.故选:D8、A【解析】以位置优先法去安排即可解决.【详解】第一步:安排甲岗位,由3名男生中任选1人,有3种方法;第二步:安排余下的4个岗位,由2名女生和余下的2名男生任意安排即可,有种方法故安排方法的种数为故选:A9、A【解析】根据小矩形的面积之和,算出位于10~30的2组数的频率之和为0.33,从而得到位于30~50的数据的频率之和为1-0.33=0.67,再由频率计算公式即可算出样本容量的值.【详解】位于10~20、20~30的小矩形的面积分别为位于10~20、20~30的据的频率分别为0.1、0.23可得位于10~30的前3组数的频率之和为0.1+0.23=0.33由此可得位于30~50数据的频率之和为1-0.33=0.67∵支出在[30,50)的同学有67人,即位于30~50的频数为67,∴根据频率计算公式,可得解之得.故选:A10、C【解析】根据互斥事件、对立事件的定义可得答案.【详解】把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、丁4人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”不能同时发生,但能同时不发生,所以它们的关系是互斥但不对立.故选:C.11、B【解析】令,求出函数的导数,得到函数的单调性,即可得到,从而求出答案【详解】解:令,则,又不等式恒成立,所以,即,所以在单调递增,故,即,所以,故选:B12、D【解析】求出、坐标可得直线的方程,与抛物线方程联立求出,根据选项可得答案,【详解】把代入得,所以,所以直线的方程为即,与抛物线方程联立解得,所以,因为反射光线平行于y轴,根据选项可得D正确,故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据还有一个量词的命题的否定的方法解答即可.【详解】命题“x≥1,x2-2x+4≥0”的否定为“”.故答案为:.14、【解析】根据中点坐标公式求出,再根据直线的两点式方程即可得出答案.【详解】解:由,,得线段的中点坐标为,所以,解得,所以直线的方程为,即.故答案为:.15、4【解析】设,写出、的坐标,利用向量数量积的坐标表示有,根据椭圆的有界性即可求的最大值.【详解】由题意知:,,若,∴,,∴,而,则,而,∴当时,.故答案为:【点睛】关键点点睛:利用向量数量积的坐标表示及椭圆的有界性求最值.16、【解析】直接根据已知写出圆的标准方程得解.【详解】解:由题得圆的标准方程为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或.【解析】(1)选条件①,由准线方程得参数,从而得抛物线方程;选条件②,由椭圆的焦点坐标与抛物线焦点坐标相同求得得抛物线方程;选条件③,由F,A,B三点共线时,,再由两点间距离公式求得得抛物线方程;(2)求出点坐标,由点到直线距离公式求得到直线的距离,设,,直线方程代入抛物线方程,判别式大于0保证相交,由韦达定理得,由弦长公式得弦长,再计算出三角形的面积后可解得【小问1详解】选条件①:由准线方程为知,所以抛物线C的方程为选条件②:因为抛物线的焦点坐标为所以由已知得椭圆的一个焦点为.所以,又,所以,所以抛物线C的方程为选条件③:由题意可知得,当F,A,B三点共线时,,由两点间距离公式,解得,所以抛物线C的方程为.【小问2详解】把代入方程,可得,设,,联立,消去y可得,由,解得,又知,,所以,由到直线的距离为,所以,即,解得或经检验均满足,所以m的值为或.18、(1)(2)【解析】(1)先求得直线和直线的交点坐标,再用点斜式求得直线的方程.(2)设圆的标准方程为,根据已知条件列方程组,求得,由此求得圆的标准方程.【小问1详解】.直线的斜率为,所以直线的斜率为,所以直线的方程为.【小问2详解】设圆的标准方程为,则,所以圆的标准方程为.19、(1)x2=2y;(2)证明见解析【解析】(1)利用抛物线的定义进行求解即可;(2)设直线l的直线方程与抛物线方程联立,根据一元二次方程根与系数关系、斜率公式进行证明即可.【小问1详解】∵点N(t,1)在抛物线C:x2=2py上,且|NF|=,∴|NF|=,解得p=1,∴抛物线C的方程为x2=2y;【小问2详解】依题意,设直线l:y=kx+1,A(x1,y1),B(x2,y2),联立,得x2﹣2kx﹣2=0.则x1x2=﹣2,∴.故k1k2为定值.【点睛】关键点睛:利用抛物线的定义是解题的关键.20、(1)证明见解析,;(2).【解析】(1)由得是公差为2的等差数列,再由可得答案.(2),分为奇数、偶数,分组求和即可求解.【小问1详解】由,得,故是公差为2的等差数列,故,由,故,于是.【小问2详解】依题意,,当为偶数时,故,当为奇数时,,综上,.21、(1);(2)347.【解析】(1)设等差数列的公差为,解方程组即得解;(2)先求出,再分组求和得解.【详解】解:(1)设等差数列的公差为,则解得所以(2)由题意,,所以所以的前8项和为22、【解析】(Ⅰ)连接BD交AC于O点,连接EO,只要证明EO∥PB,即可证明PB∥平面AEC;(Ⅱ)延长AE至M连结DM,使得AM⊥DM,说明∠CMD=60°,是二面角的平面角,求出CD,即可三棱锥E-ACD的体积试题解析:(1)证明:连接BD交AC于点O,连接EO.因为ABCD为矩形,所以O为BD中点又E为PD的中点,所以EO∥PB.因为EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC.(2)因为PA⊥平面ABCD,A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论