版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届广东省湛江市第一中学高二数学第一学期期末检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在三棱锥中,,,则异面直线PC与AB所成角的余弦值是()A. B.C. D.2.已知函数,在上随机取一个实数,则使得成立的概率为()A. B.C. D.3.已知数列为递增等比数列,,则数列的前2019项和()A. B.C. D.4.已知等差数列的公差为,前项和为,等比数列的公比为,前项和为.若,则()A. B.C. D.5.已知一组数据为:2,4,6,8,这4个数的方差为()A.4 B.5C.6 D.76.已知,若,是第二象限角,则=()A. B.5C. D.107.已知是抛物线上的点,F是抛物线C的焦点,若,则()A1011 B.2020C.2021 D.20228.如图,在平行六面体中,,则与向量相等的是()A. B.C. D.9.椭圆的焦点坐标为()A., B.,C., D.,10.在等差数列中,若的值是A.15 B.16C.17 D.1811.已知曲线,下列命题错误的是()A.若,则是椭圆,其焦点在轴上B.若,则是圆,其半径为C.若,则是双曲线,其渐近线方程为D.若,,为上任意一点,,为曲线的两个焦点,则12.若双曲线离心率为,过点,则该双曲线的方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知实数x,y满足约束条件,则的最小值为______.14.圆关于y轴对称的圆的标准方程为___________.15.如图所示,二面角为,是棱上的两点,分别在半平面内,且,,,,,则的长______16.某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为的长方形纸,对折1次共可以得到,两种规格的图形,它们的面积之和,对折2次共可以得到,,三种规格的图形,它们的面积之和,以此类推,则对折4次共可以得到不同规格图形的种数为______;如果对折次,那么______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知各项为正数的等比数列中,,.(1)求数列通项公式;(2)设,求数列的前n项和.18.(12分)已知函数(1)若,求函数的单调区间;(2)若函数有两个不相等的零点,证明:19.(12分)如图,在四棱锥P-ABCD中,平面ABCD,,,,,.(1)证明:平面平面PAC;(2)求平面PCD与平面PAB夹角的余弦值.20.(12分)已知圆与x轴交于A,B两点,P是该圆上任意一点,AP,PB的延长线分别交直线于M,N两点.(1)若弦AP长为2,求直线PB的方程;(2)以线段MN为直径作圆C,当圆C面积最小时,求此时圆C的方程.21.(12分)已知直线过坐标原点,圆的方程为(1)当直线的斜率为时,求与圆相交所得的弦长;(2)设直线与圆交于两点,,且为的中点,求直线的方程22.(10分)已知函数.(1)设函数,讨论在区间上的单调性;(2)若存在两个极值点,()(极值点是指函数取极值时对应的自变量的值),且,证明:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】分别取、、的中点、、,连接、、、、,由题意结合平面几何的知识可得、、或其补角即为异面直线PC与AB所成角,再由余弦定理即可得解.【详解】分别取、、的中点、、,连接、、、、,如图:由可得,所以,在,,可得由中位线的性质可得且,且,所以或其补角即为异面直线PC与AB所成角,在中,,所以异面直线AB与PC所成角的余弦值为.故选:A.【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角2、B【解析】首先求不等式的解集,再根据区间长度,求几何概型的概率.【详解】由,得,解得,在区间上随机取一实数,则实数满足不等式的概率为故选:B3、C【解析】根据数列为递增的等比数列,,利用“”法求得,再代入等比数列的前n项和公式求解.【详解】因为数列为递增等比数列,所以,解得:,所以.故选:C【点睛】本题主要考查等比数列的基本运算,还考查了运算求解的能力,属于基础题.4、D【解析】用基本量表示可得基本量的关系式,从而可得,故可得正确的选项.【详解】若,则,而,此时,这与题设不合,故,故,故,而,故,此时不确定,故选:D.5、B【解析】根据数据的平均数和方差的计算公式,准确计算,即可求解.【详解】由平均数的计算公式,可得,所以这4个数的方差为故选:B.6、D【解析】先由诱导公式及同角函数关系得到,再根据诱导公式化简,最后由二倍角公式化简求值即可.【详解】∵,∴,∵是第二象限角,∴,∴故选:D7、C【解析】结合向量坐标运算以及抛物线的定义求得正确答案.【详解】设,因为是抛物线上的点,F是抛物线C的焦点,所以,准线为:,因此,所以,即,由抛物线的定义可得,所以故选:C8、A【解析】根据空间向量的线性运算法则——三角形法,准确运算,即可求解.【详解】由题意,在平行六面体中,,可得.故选:A.9、A【解析】由题方程化为椭圆的标准方程求出c,则椭圆的焦点坐标可求【详解】由题得方程可化为,所以所以焦点为故选:A.10、C【解析】由已知直接利用等差数列的性质求解【详解】在等差数列{an}中,由a1+a2+a3=3,得3a2=3,即a2=1,又a5=9,∴a8=2a5-a2=18-1=17故选C【点睛】本题考查等差数列的通项公式,考查等差数列的性质,是基础题11、D【解析】根据椭圆和双曲线的性质以及定义逐一判断即可.【详解】曲线,若,则是椭圆,其焦点在轴上,故A正确;若,则,即是圆,半径为,故B正确;若,则是双曲线,当,则渐近线方程为,当,则渐近线方程为,故C正确;若,,则是双曲线,其焦点在轴上,由双曲线的定义可知,,故D错误;故选:D12、B【解析】分析可得,再将点代入双曲线的方程,求出的值,即可得出双曲线的标准方程.【详解】,则,,则双曲线的方程为,将点的坐标代入双曲线的方程可得,解得,故,因此,双曲线的方程为.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】作出该不等式表示的平面区域,由的几何意义结合距离公式得出答案.【详解】该不等式组表示的平面区域,如下图所示过点作直线的垂线,垂足为因为表示原点与可行域中点之间的距离,所以的最小值为.故答案为:14、【解析】根据题意可得圆心坐标为,半径为1,利用平面直角坐标系点关于坐标轴对称特征可得所求的圆心坐标为,半径为1,进而得出结果.【详解】由题意知,圆的圆心坐标为,半径为1,设圆关于y轴对称的圆为,所以,半径为1,所以的标准方程为.故答案为:15、【解析】推导出,从而,结合,,,能求出的长【详解】二面角为,是棱上的两点,分别在半平面、内,且所以,所以,,,的长故答案为【点睛】本题主要考查空间向量的运算法则以及数量积的运算法则,意在考查灵活应用所学知识解答问题的能力,是中档题16、①.5②.【解析】(1)按对折列举即可;(2)根据规律可得,再根据错位相减法得结果.【详解】(1)由对折2次共可以得到,,三种规格的图形,所以对着三次的结果有:,共4种不同规格(单位;故对折4次可得到如下规格:,,,,,共5种不同规格;(2)由于每次对着后的图形的面积都减小为原来的一半,故各次对着后的图形,不论规格如何,其面积成公比为的等比数列,首项为120,第n次对折后的图形面积为,对于第n此对折后的图形的规格形状种数,根据(1)的过程和结论,猜想为种(证明从略),故得猜想,设,则,两式作差得:,因此,.故答案为:;.【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于结构,其中是等差数列,是等比数列,用错位相减法求和;(3)对于结构,利用分组求和法;(4)对于结构,其中是等差数列,公差为,则,利用裂项相消法求和.解答题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)根据条件求出即可;(2),然后利用等差数列的求和公式求出答案即可.【详解】(1)且,,(2)18、(1)单调递增区间是(4,+∞),单调递减区间是(0,4);(2)证明见解析.【解析】(1)求的导函数,结合定义域及导数的符号确定单调区间;(2)法一:讨论、时的零点情况,即可得,构造,利用导数研究在(0,2a)恒成立,结合单调性证明不等式;法二:设,由零点可得,进而应用分析法将结论转化为证明,综合换元法、导数证明结论即可.【小问1详解】函数的定义域为(0,+∞),当a=2时,,则令得,x>4;令得,0<x<4;所以,单调递增区间是(4,+∞);单调递减区间是(0,4).【小问2详解】法一:当a≤0时,>0在(0,+∞)上恒成立,故函数不可能有两个不相等的零点,当a>0时,函数在(2a,+∞)上单调递增,在(0,2a)上单调递减,因为函数有两个不相等的零点,则,不妨设,设,(0<x<2a),则,所以,由a>0知:在(0,2a)恒成立,所以在(0,2a)上单调递减,即>=0,所以,即,又,故,因为,所以,因为函数在(2a,+∞)上单调递增,所以,即法二:不妨设,由题意得,,得,即,要证,只需证,即证:,即,令,,则,所以在区间(1,+∞)单调递减,故<=0,即恒成立因此,所以.【点睛】关键点点睛:第二问,法一:应用极值点偏移方法构造,将问题转化为在(0,2a)恒成立,法二:根据零点可得,再由分析法将问题化为证明,构造函数,综合运用换元法、导数证明结论.19、(1)证明见解析(2)【解析】(1)过点C作于点H,由平面几何知识证明,然后由线面垂直的性质得线线垂直,从而得线面垂直,然后可得面面垂直;(2)建立如图所示的空间直角坐标系,用空间向量法求二面角【小问1详解】在梯形ABCD中,过点C作于点H.由,,,,可知,,,.所以,即,①因为平面ABCD,平面ABCD,所以,②由①②及,平面PAC,得平面PAC.又由平面PCD,所以平面平面PAC.【小问2详解】因为AB,AD,AP两两垂直,所以以A为原点,以AB,AD,AP所在的直线分别为x,y,z轴建立空间直角坐标系,可得A(0,0,0),B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,3),,.设平面PCD的法向量为,则,取,则,,则.平面PAB的一个法向量为,所以,所以平面PCD与平面PAB所成的锐二面角的余弦值为.20、(1)或;(2).【解析】(1)根据圆的直径的性质,结合锐角三角函数定义进行求解即可;(2)根据题意,结合基本不等式和圆的标准方程进行求解即可.【小问1详解】在方程中,令,解得,或,因为AP,PB的延长线分别交直线于M,N两点,所以,圆心在x轴上,所以,因为,,所以有,当P在x轴上方时,直线PB的斜率为:,所以直线PB的方程为:,当P在x轴下方时,直线PB的斜率为:,所以直线PB的方程为:,因此直线PB的方程为或;【小问2详解】由(1)知:,,所以设直线的斜率为,因此直线的斜率为,于是直线的方程为:,令,,即直线的方程为:,令,,即,因为同号,所以,当且仅当时取等号,即当时取等号,于是有以线段MN为直径作圆C,当圆C面积最小时,此时最小,当时,和,中点坐标为:,半径为,所以圆的方程为:,同理当时,和,中点坐标为:,半径为,所以圆的方程为:,综上所述:圆C的方程为.21、(1)(2)或【解析】(1)、由题意可知直线的方程为,圆的圆心为,半径为,求出圆心到直线的距离,根据勾股定理即可求出与圆相交所得的弦长;(2)、设,因为为的中点,所以,又因为,均在圆上,将,坐标代入圆方程,即可求出点坐标,即可求出直线的方程【小问1详解】由题意:直线过坐标原点,且直线的斜率为直线的方程为,圆的方程为圆的方程可化为:圆的圆心为,半径为圆的圆心到直线:的距离为,与圆相交所得的弦长为【小问2详解】设,为的中点,又,均在圆上,或直线方程或22、(1)答案见解析(2)证明见解析【解析】(1)由题意得,然后对其求导,再分,两种情况讨论导数的正负,从而可求出函数的单调区间,(2)由(1)结合零点存在性定理可得在和上各有一个零点,且是的两个极值点,再将极值点代入导函数中化简结合已知可得,,从而将要证的结论转化为证,令,再次转化为利用导数求的最小值大于零即可【小问1详解】由,得,则,当时,在上单调递增;当时,令.当时,单调递增;当时,单调递减.综上,当时,的增区间为,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026中国储备粮管理集团招聘面试题及答案
- 2026上海实业集团招聘面试题及答案
- 工程监理职位面试攻略与答案
- 建筑设计师面试常见问题及参考答案手册
- 2025年常州铁道职业技术学院辅导员考试笔试题库附答案
- 2026年企业人力资源管理师之二级人力资源管理师考试题库500道带答案(黄金题型)
- 2025年广东茂名农林科技职业学院辅导员考试参考题库附答案
- 2026年一级造价师考试题库300道(含答案)
- 软件开发工程师面试题及代码测试含答案
- 2026年高校教师资格证《高校教师职业道德》题库含完整答案【易错题】
- 中国淋巴瘤治疗指南(2025年版)
- 2025年云南省人民检察院聘用制书记员招聘(22人)考试笔试模拟试题及答案解析
- 2026年空气污染监测方法培训课件
- 实习2025年实习实习期转正协议合同
- 疗伤旅馆商业计划书
- 2025西部机场集团航空物流有限公司招聘考试笔试备考题库及答案解析
- 2025年广西公需科目答案6卷
- 四年级《上下五千年》阅读测试题及答案
- 江苏省五高等职业教育计算机网络技术专业指导性人才培养方案
- GB/T 35347-2017机动车安全技术检测站
- 急性呼吸窘迫综合征
评论
0/150
提交评论