2026届云南省玉溪市红塔区高一数学第一学期期末质量跟踪监视试题含解析_第1页
2026届云南省玉溪市红塔区高一数学第一学期期末质量跟踪监视试题含解析_第2页
2026届云南省玉溪市红塔区高一数学第一学期期末质量跟踪监视试题含解析_第3页
2026届云南省玉溪市红塔区高一数学第一学期期末质量跟踪监视试题含解析_第4页
2026届云南省玉溪市红塔区高一数学第一学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届云南省玉溪市红塔区高一数学第一学期期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设扇形的周长为,面积为,则扇形的圆心角的弧度数是()A.1 B.2C.3 D.42.已知是奇函数,且满足,当时,,则在内是A.单调增函数,且 B.单调减函数,且C.单调增函数,且 D.单调减函数,且3.已知,则os等于()A. B.C. D.4.已知三棱锥的三条棱,,长分别是3、4、5,三条棱,,两两垂直,且该棱锥4个顶点都在同一球面上,则这个球的表面积是A B.C. D.都不对5.函数y=1+x+的部分图象大致为()A. B.C. D.6.已知函数表示为设,的值域为,则()A., B.,C., D.,7.命题的否定是()A. B.C. D.8.函数的部分图象如图所示,则的值分别是()A. B.C. D.9.若,,,则大小关系为A. B.C. D.10.如图,向量,,的起点与终点均在正方形网格的格点上,则向量用基底,表示为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.两平行线与的距离是__________12.已知定义在上的偶函数,当时,,则________13.设函数,则下列结论①的图象关于直线对称②的图象关于点对称③的图象向左平移个单位,得到一个偶函数的图象④的最小正周期为,且在上为增函数其中正确的序号为________.(填上所有正确结论的序号)14.函数在上存在零点,则实数a的取值范围是______15.若两平行直线2x+y-4=0与y=-2x-k-2的距离不大于,则k的取值范围是____16.已知扇形的周长为8,则扇形的面积的最大值为_________,此时扇形的圆心角的弧度数为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数(1)若,求的值(2)求函数在R上的最小值;(3)若方程在上有四个不相等的实数根,求a的取值范围18.义域为的函数满足:对任意实数x,y均有,且,又当时,.(1)求的值,并证明:当时,;(2)若不等式对任意恒成立,求实数的取值范围.19.已知圆M与x轴相切于点(a,0),与y轴相切于点(0,a),且圆心M在直线上.过点P(2,1)直线与圆M交于两点,点C是圆M上的动点.(1)求圆M的方程;(2)若直线AB的斜率不存在,求△ABC面积的最大值;(3)是否存在弦AB被点P平分?若存在,求出直线AB的方程;若不存在,说明理由.20.田忌和齐王赛马是历史上有名的故事,设齐王的三匹马分别为,田忌的三匹马分别为.三匹马各比赛一次,胜两场者为获胜.若这六匹马比赛的优劣程度可以用以下不等式表示:.(1)如果双方均不知道对方马的出场顺序,求田忌获胜的概率;(2)为了得到更大的获胜概率,田忌预先派出探子到齐王处打探实情,得知齐王第一场必出上等马,那么,田忌应怎样安排出马的顺序,才能使自己获胜的概率最大?最大概率是多少?21.在平面直角坐标系中,角()和角()的顶点均与坐标原点重合,始边均为轴的非负半轴,终边分别与单位圆交于两点,两点的纵坐标分别为,.(1)求,的值;(2)求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据扇形的周长为,面积为,得到,解得l,r,代入公式求解.【详解】因为扇形的周长为,面积为,所以,解得,所以,所以扇形的圆心角的弧度数是2故选:B2、A【解析】先根据f(x+1)=f(x﹣1)求出函数周期,然后根据函数在x∈(0,1)时上的单调性和函数值的符号推出在x∈(﹣1,0)时的单调性和函数值符号,最后根据周期性可求出所求【详解】∵f(x+1)=f(x﹣1),∴f(x+2)=f(x)即f(x)是周期为2的周期函数∵当x∈(0,1)时,>0,且函数在(0,1)上单调递增,y=f(x)是奇函数,∴当x∈(﹣1,0)时,f(x)<0,且函数在(﹣1,0)上单调递增根据函数的周期性可知y=f(x)在(1,2)内是单调增函数,且f(x)<0故选A【点睛】本题主要考查了函数的周期性和函数的单调性,同时考查了分析问题,解决问题的能力,属于基础题3、A【解析】利用诱导公式即可得到结果.【详解】∵∴os故选A【点睛】本题考查诱导公式的应用,属于基础题.4、B【解析】长方体的一个顶点上的三条棱分别为,且它的八个顶点都在同一个球面上,则长方体的对角线就是球的直径,长方体的对角线为球的半径为则这个球的表面积为故选点睛:本题考查的是球的体积和表面积以及球内接多面体的知识点.由题意长方体的外接球的直径就是长方体的对角线,求出长方体的对角线,就是求出球的直径,然后求出球的表面积即可5、D【解析】由题意比较函数的性质及函数图象的特征,逐项判断即可得解.【详解】当x=1时,y=1+1+sin1=2+sin1>2,排除A、C;当x→+∞时,y→+∞,排除B.故选:D.【点睛】本题考查了函数图象的识别,抓住函数图象的差异是解题关键,属于基础题.6、A【解析】根据所给函数可得答案.【详解】根据题意得,的值域为.故选:A.7、C【解析】根据存在量词命题的否定是全称量词命题,选出正确选项.【详解】因为命题是存在量词命题,所以其否定是全称量词命题,即,.故选:C.8、A【解析】根据的图象求得,求得,再根据,求得,求得的值,即可求解.【详解】根据函数的图象,可得,可得,所以,又由,可得,即,解得,因为,所以.故选:A.9、D【解析】取中间值0和1分别与这三个数比较大小,进而得出结论【详解】解:,,,,故选:D.【点睛】本题主要考查取中间值法比较数的大小,属于基础题10、C【解析】由题设有,所以,选C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】直接根据两平行线间的距离公式得到平行线与的距离为:故答案为.12、6【解析】利用函数是偶函数,,代入求值.【详解】是偶函数,.故答案6【点睛】本题考查利用函数的奇偶性求值,意在考查转化与变形,属于简单题型.13、③【解析】利用正弦型函数的对称性判断①②的正误,利用平移变换判断③的正误,利用周期性与单调性判断④的正误.【详解】解:对于①,因为f()=sinπ=0,所以不是对称轴,故①错;对于②,因为f()=sin,所以点不是对称中心,故②错;对于③,将把f(x)的图象向左平移个单位,得到的函数为y=sin[2(x)]=sin(2x)=cos2x,所以得到一个偶函数的图象;对于④,因为若x∈[0,],则,所以f(x)在[0,]上不单调,故④错;故正确的结论是③故答案为③【点睛】此题考查了正弦函数的对称性、三角函数平移的规律、整体角处理的方法,正弦函数的图象与性质是解本题的关键三、14、【解析】由可得,求出在上的值域,则实数a的取值范围可求【详解】由,得,即由,得,又∵函数在上存在零点,即实数a的取值范围是故答案为【点睛】本题考查函数零点的判定,考查函数值域的求法,是基础题15、【解析】利用平行线之间的距离及两直线不重合列出不等式,求解即可【详解】y=﹣2x﹣k﹣2的一般式方程为2x+y+k+2=0,则两平行直线的距离d得,|k+6|≤5,解得﹣11≤k≤﹣1,当k+2=﹣4,即k=﹣6,此时两直线重合,所以k的取值范围是故答案为【点睛】本题考查了两平行直线间的距离,考查两直线平行的条件,考查计算能力,属于基础题.16、①.4②.2【解析】根据扇形的面积公式,结合配方法和弧长公式进行求解即可.【详解】设扇形所在圆周的半径为r,弧长为l,有,,此时,,故答案为:;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)【解析】(1)利用求得,由此求得.(2)利用换元法,对进行分类讨论,结合二次函数的性质求得正确答案.(3)利用换元法,结合二次函数零点分布等知识来求得的取值范围.【小问1详解】因,所以即此时,由【小问2详解】令,,则,对称轴为①,即,②,即,③,即,综上可知,.【小问3详解】令,由题意可知,当时,有两个不等实数解,所以原题可转化为在内有两个不等实数根所以有18、(1)答案见解析;(2)或.【解析】(1)利用赋值法计算可得,设,则,利用拆项:即可证得:当时,;(2)结合(1)的结论可证得是增函数,据此脱去f符号,原问题转化为在上恒成立,分离参数有:恒成立,结合基本不等式的结论可得实数的取值范围是或.试题解析:(1)令,得,令,得,令,得,设,则,因为,所以;(2)设,

,

因为所以,所以为增函数,所以,

即,上式等价于对任意恒成立,因为,所以上式等价于对任意恒成立,设,(时取等),所以,解得或.19、(1)(2)(3)存在,方程为【解析】(1)根据圆与坐标轴相切表示出圆心坐标,结合已知可解;(2)注意到当点C到直线AB距离最大值为圆心到直线距离加半径,然后可解;(3)根据圆心与弦的中点的连线垂直弦,或利用点差法可得.【小问1详解】∵圆M与x轴相切于点(a,0),与y轴相切于点(0,a),∴圆M的圆心为M(a,a),半径.又圆心M在直线上,∴,解得.∴圆M的方程为:.【小问2详解】当直线AB的斜率不存在时,直线AB的方程为,∴由,解得.∴.易知圆心M到直线AB的距离,∴点C到直线AB的最大距离为.∴△ABC面积的最大值为.【小问3详解】方法一:假设存在弦AB被点P平分,即P为AB的中点.又∵,∴.又∵直线MP的斜率为,∴直线AB的斜率为-.∴.∴存在直线AB的方程为时,弦AB被点P平分.方法二:由(2)易知当直线AB的斜率不存在时,,∴此时点P不平分AB.当直线AB的斜率存在时,,假设点P平分弦AB.∵点A、B是圆M上的点,设,.∴由点差法得.由点P是弦AB的中点,可得,∴.∴∴存在直线AB的方程为时,弦AB被点P平分.20、(1)(2)田忌按或的顺序出马,才能使自己获胜的概率达到最大【解析】(1)齐王与田忌赛马,有六种情况,田忌获胜的只有一种,故田忌获胜的槪率为.(2)因齐王第一场必出上等马,若田忌第一场必出上等马或中等马,则剩下二场,田忌至少输一场,这时田忌必败.为了使自己获胜的概率最大,田忌第一场应出下等马,在余下的两场比赛中,田忌获胜的概率为(余下两场是齐王的中马对田忌上马和齐王的下马对田忌的上马;齐王的中马对田忌下马和齐王的下马对田忌的中马,前者田忌赢,后者田忌输)解析:记与比赛为,其它同理.(1)齐王与田忌赛马,有如下六种情况:;;;;;;其中田忌获胜的只有一种:.故田忌获胜的槪率为.(2)已知齐王第一场必出上等马,若田忌第一场必出上等马或中等马,则剩下二场,田忌至少输一场,这时田忌必败.为了使自己获胜的概率最大,田忌第一场应出下等马,后两场有两种情形:①若齐王第二场派出中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论