评价大联考2026届高二上数学期末考试模拟试题含解析_第1页
评价大联考2026届高二上数学期末考试模拟试题含解析_第2页
评价大联考2026届高二上数学期末考试模拟试题含解析_第3页
评价大联考2026届高二上数学期末考试模拟试题含解析_第4页
评价大联考2026届高二上数学期末考试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

评价大联考2026届高二上数学期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,,点为圆上任意一点,设,则的最大值为()A. B.C. D.2.已知直线与椭圆:()相交于,两点,且线段的中点在直线:上,则椭圆的离心率为()A. B.C. D.3.若任取,则x与y差的绝对值不小于1的概率为()A. B.C. D.4.双曲线的渐近线的斜率是()A.1 B.C. D.5.直线经过两点,那么其斜率为()A. B.C. D.6.正方体中,E、F分别是与的中点,则直线ED与所成角的余弦值是()A. B.C. D.7.若双曲线经过点,且它的两条渐近线方程是,则双曲线的离心率是()A. B.C. D.108.过原点O作两条相互垂直的直线分别与椭圆交于A、C与B、D,则四边形ABCD面积最小值为()A B.C. D.9.设,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.执行如图所示的程序框图,输出的值为()A. B.C. D.11.已知数列满足,且,那么()A. B.C. D.12.已知函数满足对于恒成立,设则下列不等关系正确是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.将全体正整数排成一个三角形数阵(如图):按照以上排列的规律,第9行从左向右的第2个数为__________.14.椭圆C:的左、右焦点分别为,,点A在椭圆上,,直线交椭圆于点B,,则椭圆的离心率为______15.已知数列的各项均为正数,其前项和满足,则__________;记表示不超过的最大整数,例如,若,设的前项和为,则__________16.在棱长为1的正方体中,___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某企业计划新购买台设备,并将购买的设备分配给名年龄不同(视为技术水平不同)的技工加工一批模具,因技术水平不同而加工出的产品数量不同,故产生的经济效益也不同.若用变量表示不同技工的年龄,变量为相应的效益值(元),根据以往统计经验,他们的工作效益满足最小二乘法,且关于的线性回归方程为(1)试预测一名年龄为岁的技工使用该设备所产生的经济效益;(2)试根据的值判断使用该批设备的技工人员所产生的的效益与技工年龄的相关性强弱(,则认为与线性相关性很强;,则认为与线性相关性不强);(3)若这批设备有两道独立运行的生产工序,且两道工序出现故障的概率依次是,.若两道工序都没有出现故障,则生产成本不增加;若工序出现故障,则生产成本增加万元;若工序出现故障,则生产成本增加万元;若两道工序都出现故障,则生产成本增加万元.求这批设备增加的生产成本的期望参考数据:,参考公式:回归直线的斜率和截距的最小二乘估计分别为,,.18.(12分)如图所示,已知定点为曲线上一个动点,求线段中点的轨迹方程.19.(12分)记为数列的前项和,且(1)求的通项公式;(2)设,求数列的前项和20.(12分)某项目的建设过程中,发现其补贴额x(单位:百万元)与该项目的经济回报y(单位:千万元)之间存在着线性相关关系,统计数据如下表:补贴额x(单位:百万元)23456经济回报y(单位:千万元)2.5344.56(1)请根据上表所给的数据,求出y关于x的线性回归直线方程;(2)为高质量完成该项目,决定对负责该项目的7名工程师进行考核.考核结果为4人优秀,3人合格.现从这7名工程师中随机抽取3人,用X表示抽取的3人中考核优秀的人数,求随机变量X的分布列与期望.参考公式:21.(12分)在直三棱柱中,,,,,分别是,上的点,且(1)求证:∥平面;(2)求平面与平面所成锐二面角的余弦值22.(10分)某校高二年级全体学生参加了一次数学测试,学校利用简单随机抽样的方法从甲班、乙班各抽取五名同学的数学测试成绩(单位:分)得到如下茎叶图,若甲、乙两班数据的中位数相等且平均数也相等.(1)求出茎叶图中m和n的值:(2)若从86分以上(不含86分)的同学中随机抽出两名,求此两人都来自甲班的概率.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据题意可设,再根据,求出,再利用三角函数的性质即可得出答案.【详解】解:由点为圆上任意一点,可设,则,由,得,所以,则,则,其中,所以当时,取得最大值为22.故选:C.2、A【解析】将直线代入椭圆方程整理得关于的方程,运用韦达定理,求出中点坐标,再由条件得到,再由,,的关系和离心率公式,即可求出离心率.【详解】解:将直线代入椭圆方程得,,即,设,,,,则,即中点的横坐标是,纵坐标是,由于线段的中点在直线上,则,又,则,,即椭圆的离心率为.故选:A3、C【解析】根据题意,在平面直角坐标系中分析以及与差的绝对值不小于1所对应的平面区域,求出其面积,由几何概型公式计算可得答案.【详解】根据题意,,其对应的区域为正方形,其面积,若与差的绝对值不小于1,即,即或,对应的区域为图中的阴影部分,其面积为,故与差的绝对值不小于1的概率.故选:C4、B【解析】由双曲线的渐近线方程为:,化简即可得到答案.【详解】双曲线的渐近线方程为:,即,渐近线的斜率是.故选:B5、B【解析】由两点的斜率公式可得答案.【详解】直线经过两点,则故选:B6、A【解析】以A为原点建立空间直角坐标系,求出E,F,D,D1点的坐标,利用向量求法求解【详解】如图,以A为原点建立空间直角坐标系,设正方体的边长为2,则,,,,,直线与所成角的余弦值为:.故选:A【点睛】本题考查异面直线所成角的求法,属于基础题.7、A【解析】由已知设双曲线方程为:,代入求得,计算即可得出离心率.【详解】双曲线经过点,且它的两条渐近线方程是,设双曲线方程为:,代入得:,.所以双曲线方程为:..双曲线C的离心率为故选:A8、A【解析】直线AC、BD与坐标轴重合时求出四边形面积,与坐标轴不重合求出四边形ABCD面积最小值,再比较大小即可作答.【详解】因四边形ABCD的两条对角线互相垂直,由椭圆性质知,四边形ABCD的四个顶点为椭圆顶点时,而,四边形ABCD的面积,当直线AC斜率存在且不0时,设其方程为,由消去y得:,设,则,,直线BD方程为,同理得:,则有,当且仅当,即或时取“=”,而,所以四边形ABCD面积最小值为.故选:A9、B【解析】求出不等式的等价形式,结合充分条件和必要条件的定义进行判断即可【详解】由得或,由得,因为或推不出,但能推出或成立,所以“”是“”的必要不充分条件,故选:B10、B【解析】根据程序框图的循环逻辑写出其执行步骤,即可确定输出结果.【详解】由程序框图的逻辑,执行步骤如下:1、:执行循环,,;2、:执行循环,,;3、:执行循环,,;4、:执行循环,,;5、:执行循环,,;6、:不成立,跳出循环.∴输出的值为.故选:B.11、D【解析】由递推公式得到,,,再结合已知即可求解.【详解】解:由,得,,又,那么故选:D12、A【解析】由条件可得函数为上的增函数,构造函数,利用函数单调性比较的大小,再根据函数的单调性确定各选项的对错.【详解】设,则,∵,∴,∴函数在上为增函数,∵,∴,故,所以,C错,令(),则,当时,,当时,∴函数在区间上为增函数,在区间上为减函数,又,∴,∴,即,∴,故,所以,D错,,故,所以,A对,,故,所以,B错,故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、38【解析】根据数阵的规律求得正确答案.【详解】数阵第行有个数,第行有个数,并且数字从开始,每次递增.前行共有个数,第行从左向右的最后一个数是,所以第行从左向右的第个数为.故答案为:14、(也可以)【解析】可以利用条件三角形为等腰直角三角形,设出边长,找到边长与之间等量关系,然后把等量关系带入到勾股定理表达的等式中,即可求解离心率.【详解】由题意知三角形为等腰直角三角形,设,则,解得,,在三角形中,由勾股定理得,所以,故答案为:(也可以)15、①.;②.60.【解析】先根据并结合等差数列的定义求出;然后讨论n的取值范围,讨论出分别取1,2,3,4,5的情况,进而求出.【详解】由题意,,n=1时,,满足,时,,于是,,因为,所以.所以,是1为首项,2为公差的等差数列,所以.若,即时,,若,则时,,若,则时,,若,则时,,若,则或22时,,于是,.故答案为:2n-1;60.16、1【解析】根据向量的加法及向量数量积的运算性质求解.【详解】如图,在正方体中,,故答案为:1三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)元;(2)使用该批设备的技工人员所产生的的效益与技工年龄的相关性强;(3)0.13万元.【解析】(1)直接把代入线性回归方程即得解;(2)先求出,再代公式求出相关系数比较即得解;(3)设增加的生产成本为ξ(万元),则ξ的可能取值为0,2,3,5,求出对应的概率即得解.小问1详解】解:当时,.所以预测一名年龄为岁的技工使用该设备所产生的经济效益为元.【小问2详解】解:由题得,所以,所以.因为,所以与线性相关性很强.所以使用该批设备的技工人员所产生的的效益与技工年龄的相关性强.【小问3详解】解:设增加的生产成本为ξ(万元),则ξ的可能取值为0,2,3,5P(ξ=0)=(1﹣0.02)×(1﹣0.03)=0.9506,P(ξ=2)=0.02×(1﹣0.03)=0.0194,P(ξ=3)=(1﹣0.02)×0.03=0.0294,P(ξ=5)=0.02×0.03=0.0006所以Eξ=0×0.9506+2×0.0194+3×0.0294+5×0.0006=0.13(万元),所以这批设备增加的生产成本的期望为0.13万元.18、【解析】设线段的中点的坐标为,点的坐标为,根据中点坐标公式和代入法求得线段中点的轨迹方程.【详解】解设线段的中点的坐标为,点的坐标为,则用代入法求得所求方程为.【点睛】本题考查了中点坐标公式和代入法求动点的轨迹方程,属于容易题.19、(1)(2)【解析】(1)利用,再结合等比数列的概念,即可求出结果;(2)由(1)可知数列是以为首项,公差为的等差数列,根据等差数列的前项和公式,即可求出结果.【小问1详解】解:当时,,解得;当且时,所以所以是以为首项,为公比的等比数列所以;【小问2详解】解:由(1)可知,所以,又,所以数列是以为首项,公差为的等差数列,所以数列的前项和.20、(1)(2)分布列答案见解析,数学期望:【解析】(1)根据表中的数据和公式直接求解即可,(2)由题意可知,的可能取值为0,1,2,3,然后求各自对应的概率,从而可求得分布列和期望【小问1详解】.,...【小问2详解】由题意可知,的可能取值为0,1,2,3.,,分布列为0123.21、(1)证明见解析(2)【解析】(1)建立空间直角坐标系,由空间向量证明与平面的法向量垂直(2)由空间向量求解【小问1详解】以C为原点,分别为轴建立空间直角坐标系,如图,则,,,,,,设,因为,所以,故,得,同理求得,所以,因为是平面的一个法向量,且,所以,又平面,所以平面;【小问2详解】由(1)可得:,,设平面的一个法向量为,则,即令,则,所以,又平面的一个法向量为,设表示平面与平面所成锐二面角,则22、(1),(2)【解析】(1)根据茎叶图得甲班中位数为,由此能求出,根据由,且,能求出.(2)甲班86分以上有2人,乙班86分以有2人,从

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论