版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省黄梅县第二中学2026届高一上数学期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数的值域为,则实数m的值为()A.2 B.3C.9 D.272.表示不超过x的最大整数,例如,.若是函数的零点,则()A.1 B.2C.3 D.43.函数,的图象大致是()A. B.C. D.4.下列函数中,在区间上是增函数是A. B.C. D.5.在底面为正方形的四棱锥中,侧面底面,,,则异面直线与所成的角为()A. B.C. D.6.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是,则它的表面积是A.17π B.18πC.20π D.28π7.已知,,则下列不等式正确的是()A. B.C. D.8.过点且与原点距离最大的直线方程是()A. B.C. D.9.甲、乙两人在一次赛跑中,从同一地点出发,路程s与时间t的函数关系如图所示,则下列说法正确的是()A.甲比乙先出发 B.乙比甲跑的路程多C.甲比乙先到达终点 D.甲、乙两人的速度相同10.已知向量,,,若,,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.不等式的解为______12.已知函数(且),若对,,都有.则实数a的取值范围是___________13.如图,、、、分别是三棱柱的顶点或所在棱的中点,则表示直线与是异面直线的图形有______.14.给出下列命题“①设表示不超过的最大整数,则;②定义:若任意,总有,就称集合为的“闭集”,已知且为的“闭集”,则这样的集合共有7个;③已知函数为奇函数,在区间上有最大值5,那么在上有最小值.其中正确的命题序号是_________.15.已知扇形的圆心角为,面积为,则该扇形的弧长为___________.16.函数的单调增区间是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的部分图象如下图所示.(1)求函数的解析式,并写出函数的单调递增区间;(2)将函数图象上所有点的横坐标缩短到原来的(纵坐标不变),再将所得的函数图象上所有点向左平移个单位长度,得到函数的图象.若函数的图象关于直线对称,求函数在区间上的值域.18.已知函数的定义域为(1)求的定义域;(2)对于(1)中的集合,若,使得成立,求实数的取值范围19.已知集合为非空数集,定义,.(1)若集合,直接写出集合及;(2)若集合,,且,求证;(3)若集,且,求集合中元素的个数的最大值.20.设函数是增函数,对于任意都有(1)写一个满足条件的;(2)证明是奇函数;(3)解不等式21.如图,在正方体中,为棱、的三等分点(靠近A点).求证:(1)平面;(2)求证:平面平面.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据对数型复合函数的性质计算可得;【详解】解:因为函数的值域为,所以的最小值为,所以;故选:C2、B【解析】利用零点存在定理得到零点所在区间求解.【详解】因为函数在定义域上连续的增函数,且,又∵是函数的零点,∴,所以,故选:B.3、A【解析】判断函数的奇偶性和对称性,以及函数在上的符号,利用排除法进行判断即可【详解】解:函数,则函数是奇函数,排除D,当时,,则,排除B,C,故选:A【点睛】本题主要考查函数图象的识别和判断,利用函数奇偶性和对称性以及函数值的对应性,结合排除法是解决本题的关键.难度不大4、A【解析】由题意得函数在上为增函数,函数在上都为减函数.选A5、C【解析】由已知可得PA⊥平面ABCD,底面ABCD为正方形,分别过P,D点作AD,AP的平行线交于M,连接CM,AM,因为PB∥CM,所以ACM就是异面直线PB与AC所成的角,再求解即可.【详解】由题意:底面ABCD为正方形,侧面底面,,面面,PA⊥平面ABCD,分别过P,D点作AD,AP的平行线交于M,连接CM,AM,∵PM∥AD,AD∥BC,PM=AD,AD=BC∴PBCM是平行四边形,∴PB∥CM,所以∠ACM就是异面直线PB与AC所成的角设PA=AB=a,在三角形ACM中,,∴三角形ACM是等边三角形所以∠ACM等于60°,即异面直线PB与AC所成的角为60°故选:C.【点睛】思路点睛:先利用面面垂直得到PA⊥平面ABCD,分别过P,D点作AD,AP的平行线交于M,连接CM,AM,得到∠ACM就是异面直线PB与AC所成的角6、A【解析】由三视图知,该几何体的直观图如图所示:是一个球被切掉左上角的,即该几何体是个球,设球的半径为,则,解得,所以它的表面积是的球面面积和三个扇形面积之和,即,故选A【考点】三视图及球的表面积与体积【名师点睛】由于三视图能有效地考查学生的空间想象能力,所以以三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般与几何体的表面积与体积相结合.由三视图还原出原几何体是解决此类问题的关键.7、C【解析】利用指数函数、对数函数的单调性即可求解.【详解】由为单调递减函数,则,为单调递减函数,则,为单调递增函数,则故.故选:C【点睛】本题考查了指数函数、对数函数的单调性比较指数式、对数式的大小,属于基础题.8、A【解析】首先根据题意得到过点且与垂直的直线为所求直线,再求直线方程即可.【详解】由题知:过点且与原点距离最大的直线为过点且与垂直的直线.因为,故所求直线为,即.故选:A【点睛】本题主要考查直线方程的求解,数形结合为解题的关键,属于简单题.9、C【解析】结合图像逐项求解即可.【详解】结合已知条件可知,甲乙同时出发且跑的路程都为,故AB错误;且当甲乙两人跑的路程为时,甲所用时间比乙少,故甲先到达终点且甲的速度较大,故C正确,D错误.故选:C.10、C【解析】计算出向量的坐标,然后利用共线向量的坐标表示得出关于实数的等式,解出即可.【详解】向量,,,又且,,解得.故选:C.【点睛】本题考查平面向量的坐标运算,考查共线向量的坐标表示,考查计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据幂函数的性质,分类讨论即可【详解】将不等式转化成(Ⅰ),解得;(Ⅱ),解得;(Ⅲ),此时无解;综上,不等式的解集为:故答案为:12、【解析】由条件可知函数是增函数,可得分段函数两段都是增函数,且时,满足,由不等式组求解即可.【详解】因为对,且都有成立,所以函数在上单调递增.所以,解得.故答案为:13、②④【解析】图①中,直线,图②中面,图③中,图④中,面【详解】解:根据题意,在①中,且,则四边形是平行四边形,有,不是异面直线;图②中,、、三点共面,但面,因此直线与异面;在③中,、分别是所在棱的中点,所以且,故,必相交,不是异面直线;图④中,、、共面,但面,与异面所以图②④中与异面故答案为:②④.14、①②【解析】对于①,如果,则,也就是,所以,进一步计算可以得到该和为,故①正确;对于②,我们把分成四组:,由题设可知不是“闭集”中的元素,其余三组元素中的每组元素必定在“闭集”中同时出现或同时不出现,故所求的“闭集”的个数为,故②正确;对于③,因为在上的最大值为,故在上的最大值为,所以在上的最小值为,在上的最小值为,故③错.综上,填①②点睛:(1)根据可以得到,因此,这样的共有,它们的和为,依据这个规律可以写出和并计算该和(2)根据闭集的要求,中每组元素都是同时出现在闭集中或者同时不出现在闭集中,故可以根据子集的个数公式来计算(3)注意把非奇非偶函数转化为奇函数或偶函数来讨论15、【解析】由扇形的圆心角与面积求得半径再利用弧长公式即可求弧长.【详解】设扇形的半径为r,由扇形的面积公式得:,解得,该扇形的弧长为.故答案为:.16、,【解析】分析:利用二倍角的正弦公式、二倍角的余弦公式以及两角和与差的正弦公式将函数化为,利用正弦函数的单调性解不等式,可得到函数的递增区间.详解:,,,由,计算得出,因此函数的单调递增区间为:,故答案为,.点睛:本题主要考查三角函数的单调性,属于中档题.函数的单调区间的求法:(1)代换法:①若,把看作是一个整体,由求得函数的减区间,求得增区间;②若,则利用诱导公式先将的符号化为正,再利用①的方法,或根据复合函数的单调性规律进行求解;(2)图象法:画出三角函数图象,利用图象求函数的单调区间.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),递增区间为;(2).【解析】(1)由三角函数的图象,求得函数的解析式,结合三角函数的性质,即可求解.(2)由三角函数的图象变换,求得,根据的图象关于直线对称,求得的值,得到,结合三角函数的性质,即可求解.【详解】(1)由图象可知,,所以,所以,由图可求出最低点的坐标为,所以,所以,所以,因为,所以,所以,由,可得.所以函数的单调递增区间为.(2)由题意知,函数,因为的图象关于直线对称,所以,即,因为,所以,所以.当时,,可得,所以,即函数的值域为.【点睛】解答三角函数的图象与性质的基本方法:1、根据已知条件化简得出三角函数的解析式为的形式;2、熟练应用三角函数的图象与性质,结合数形结合法的思想研究函数的性质(如:单调性、奇偶性、对称性、周期性与最值等),进而加深理解函数的极值点、最值点、零点及有界性等概念与性质,但解答中主要角的范围的判定,防止错解.18、(1)(2)【解析】(1)的定义域可以求出,即的定义域;(2)令,若,使得成立,即可转化为成立,求出即可.【小问1详解】∵的定义域为,∴∴,则【小问2详解】令,,使得成立,即大于在上的最小值∵,∴在上的最小值为,∴实数的取值范围是19、(1),;(2)证明见解析;(3)1347.【解析】(1)根据题目定义,直接得到集合A+及A﹣;(2)根据两集合相等即可找到x1,x2,x3,x4的关系;(3)通过假设A集合{m,m+1,m+2,…,4040},m≤2020,m∈N,求出相应的A+及A﹣,通过A+∩A﹣=∅建立不等关系求出相应的值【详解】(1)根据题意,由,则,;(2)由于集合,,且,所以中也只包含四个元素,即,剩下的,所以;(3)设满足题意,其中,则,∴,,∴,∵,由容斥原理,中最小的元素为0,最大的元素为,∴,∴,∴,实际上当时满足题意,证明如下:设,则,,依题意有,即,故的最小值为674,于是当时,中元素最多,即时满足题意,综上所述,集合中元素的个数的最大值是1347.【点睛】关键点点睛:第三问集合中元素的个数最多时,应满足中的最大值小于中的最小值,另外容斥原理的应用也是解题的关键.20、(1),(2)见解析(3)【解析】(1)满足是增函数,对于任意都有的函数(2)利用函数的奇偶性的定义转化求解即可(3)利用已知条件转化不等式,通过函数的单调性转化求解即可【小问1详解】因为函数是增函数,对于任意都有,这样的函数很多,其中一种为:,证明如下:函数满足是增函数,,所以满足题意.【小问2详解】令,则由得,即得,故是奇函数【小问3详解】,所以,则,因为,所以,所以,又因为函数是增函数,所以,所以或.所以的解集为:.21、(1)见解析;(2)见解析.【解析】(1)欲证:平面,根据直线与平面平行的判定定理可知,只需证与平面内一条直线平行,连接,可知,则,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 智能硬件工程师面试题及物联网应用含答案
- 中国化学安全工程师面试题库含答案
- 2025内蒙古呼伦贝尔市大学生乡村医生专项计划招聘3人笔试考试备考题库及答案解析
- 唯品会市场专员岗位笔试面试题目
- 重庆医科大学附属北碚医院招聘护理10人笔试考试参考试题及答案解析
- 2025陕西西安市经开第三学校教师招聘考试笔试备考题库及答案解析
- 2026河北沧州职业技术学院、沧州工贸学校高层次人才选聘23人考试笔试备考试题及答案解析
- 供应链优化面试题及答案
- 2025年甘肃省嘉峪关市慈善协会招聘公益性岗位人员笔试考试参考题库及答案解析
- 2025年中职工程造价(造价基础计算)试题及答案
- 科睿唯安 2025-年最值得关注的公司:蛋白质降解剂-使针对“不可成药”靶点的精准干预成为可能
- 《建筑业10项新技术(2025)》全文
- 最新-脂肪性肝病课件
- 眼科OCT异常图谱解读
- DB11- 996-2013-城乡规划用地分类标准-(高清有效)
- 风光互补系统实验(圣威科技)王鑫
- 1-院前急救风险管理
- 古典园林分析之郭庄讲解课件
- 核电工程质量保证知识培训教材PPT课件
- 交管12123驾照学法减分题库及答案共155题(完整版)
- HV__HB__HRC硬度之间的换算关系
评论
0/150
提交评论