版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省山东师大附中2026届高二上数学期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.命题,,则为()A., B.,C., D.,2.已知抛物线的焦点为,过点且倾斜角为锐角的直线与交于、两点,过线段的中点且垂直于的直线与的准线交于点,若,则的斜率为()A. B.C. D.3.如图,在四棱锥中,平面,,,则点到直线的距离为()A. B.C. D.24.已知四棱锥,底面为平行四边形,分别为,上的点,,设,则向量用为基底表示为()A. B.C. D.5.在试验“甲射击三次,观察中靶的情况”中,事件A表示随机事件“至少中靶1次”,事件B表示随机事件“正好中靶2次”,事件C表示随机事件“至多中靶2次”,事件D表示随机事件“全部脱靶”,则()A.A与C是互斥事件 B.B与C是互斥事件C.A与D是对立事件 D.B与D是对立事件6.曲线与曲线的A.长轴长相等 B.短轴长相等C.离心率相等 D.焦距相等7.如果双曲线的一条渐近线方程为,且经过点,则双曲线的标准方程是()A. B.C. D.8.准线方程为的抛物线的标准方程为()A. B.C. D.9.下列推理中属于归纳推理且结论正确的是()A.由,求出,,,…,推断:数列的前项和B.由满足对都成立,推断:为奇函数C.由半径为的圆的面积,推断单位圆的面积D.由,,,…,推断:对一切,10.函数在区间(0,e)上的极小值为()A.-e B.1-eC.-1 D.111.有一机器人的运动方程为,(是时间,是位移),则该机器人在时刻时的瞬时速度为()A. B.C. D.12.数学美的表现形式不同于自然美或艺术美那样直观,它蕴藏于特有的抽象概念,公式符号,推理论证,思维方法等之中,揭示了规律性,是一种科学的真实美.平面直角坐标系中,曲线:就是一条形状优美的曲线,对于此曲线,给出如下结论:①曲线围成的图形的面积是;②曲线上的任意两点间的距离不超过;③若是曲线上任意一点,则的最小值是其中正确结论的个数为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.直线与圆相交于两点M,N,若满足,则________14.如图,已知椭圆+y2=1的左焦点为F,O为坐标原点,设过点F且不与坐标轴垂直的直线交椭圆于A,B两点,线段AB的垂直平分线与x轴交于点G,则点G横坐标的取值范围为________15.直线恒过定点,则定点坐标为________16.已知直线和互相平行,则实数的值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面四边形为角梯形,,,,O为的中点,,.(1)证明:平面;(2)若,求平面与平面所成夹角的余弦值.18.(12分)已知函数(1)当时,求曲线在点(0,f(0))处的切线方程;(2)若存在,使得不等式成立,求m的取值范围19.(12分)如图,已知三棱锥的侧棱,,两两垂直,且,,是的中点.(1)求异面直线与所成角的余弦值;(2)求点到面的距离.(3)求二面角的平面角的正切值.20.(12分)设a,b是实数,若椭圆过点,且离心率为.(1)求椭圆E的标准方程;(2)过椭圆E的上顶点P分别作斜率为,的两条直线与椭圆交于C,D两点,且,试探究过C,D两点的直线是否过定点?若过定点,求出定点坐标;否则,说明理由.21.(12分)已知椭圆的左焦点为,上顶点为,直线与椭圆的另一个交点为A(1)求点A的坐标;(2)过点且斜率为的直线与椭圆交于,两点(均与A,不重合),过点与轴垂直的直线分别交直线,于点,,证明:点,关于轴对称22.(10分)已知各项均为正数的等比数列前项和为,且,.(1)求数列的通项公式;(2)若,求
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】直接利用特称命题的否定是全称命题写出结果即可.【详解】命题,为特称命题,而特称命题的否定是全称命题,所以命题,,则为:,.故选:B2、C【解析】设直线的方程为,其中,设点、、,将直线的方程与抛物线的方程联立,列出韦达定理,求出、,根据条件可求得的值,即可得出直线的斜率.【详解】抛物线的焦点为,设直线的方程为,其中,设点、、,联立可得,,,所以,,,,直线的斜率为,则直线的斜率为,所以,,因为,则,因为,解得,因此,直线的斜率为.故选:C.3、A【解析】如图,以为坐标原点,建立空间直角坐标系,然后利用空间向量求解即可【详解】因为平面,平面,平面,所以,,因为所以如图,以为坐标原点,建立空间直角坐标系,则,,,,,即.在上的投影向量的长度为,故点到直线的距离为.故选:A4、D【解析】通过寻找封闭的三角形,将相关向量一步步用基底表示即可.【详解】.故选:D5、C【解析】根据互斥事件、对立事件的定义即可求解.【详解】解:因为A与C,B与C可能同时发生,故选项A、B不正确;B与D不可能同时发生,但B与D不是事件的所有结果,故选项D不正确;A与D不可能同时发生,且A与D为事件的所有结果,故选项C正确故选:C.6、D【解析】分别求出两椭圆的长轴长、短轴长、离心率、焦距,即可判断【详解】解:曲线表示焦点在轴上,长轴长10,短轴长为6,离心率为,焦距为8曲线表示焦点在轴上,长轴长为,短轴长为,离心率为,焦距为8对照选项,则正确故选:【点睛】本题考查椭圆的方程和性质,考查运算能力,属于基础题7、D【解析】根据渐近线方程设出双曲线方程,然后将点代入,进而求得答案.【详解】因为双曲线的一条渐近线方程为,所以设双曲线方程为,将代入得:,即双曲线方程为.故选:D.8、D【解析】的准线方程为.【详解】的准线方程为.故选:D.9、A【解析】根据归纳推理是由特殊到一般,推导结论可得结果.【详解】对于A,由,求出,,,…,推断:数列的前项和,是由特殊推导出一般性的结论,且,故A正确;B和C属于演绎推理,故不正确;对于D,属于归纳推理,但时,结论不正确,故D不正确.故选:A.10、D【解析】求导判断函数的单调性即可求解【详解】的定义域为(0,+∞),,令,得x=1,当x∈(0,1)时,,单调递减,当x∈(1,e)时,,单调递增,故在x=1处取得极小值.故选:D.11、B【解析】对运动方程求导,根据导数意义即速度求得在时的导数值即可.【详解】由题知,,当时,,即速度为7.故选:B12、C【解析】结合已知条件写出曲线的解析式,进而作出图像,对于①,通过图像可知,所求面积为四个半圆和一个正方形面积之和,结合数据求解即可;对于②,根据图像求出曲线上的任意两点间的距离的最大值即可判断;对于③,将问题转化为点到直线的距离,然后利用圆上一点到直线的距离的最小值为圆心到直线的距离减去半径即可求解.【详解】当且时,曲线的方程可化为:;当且时,曲线的方程可化为:;当且时,曲线的方程可化为:;当且时,曲线的方程可化为:,曲线的图像如下图所示:由上图可知,曲线所围成的面积为四个半圆的面积与边长为的正方形的面积之和,从而曲线所围成的面积,故①正确;由曲线的图像可知,曲线上的任意两点间的距离的最大值为两个半径与正方形的边长之和,即,故②错误;因为到直线的距离为,所以,当最小时,易知在曲线的第一象限内的图像上,因为曲线的第一象限内的图像是圆心为,半径为的半圆,所以圆心到的距离,从而,即,故③正确,故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由点到直线的距离公式,结合已知可得圆心到直线的距离,再由圆的弦长公式可得,然后可解.【详解】因为,所以,所以,圆心到直线的距离因为,所以,所以故答案为:14、【解析】设直线的方程为,设点、,将直线的方程与椭圆的方程联立,列出韦达定理,求出线段的垂直平分线方程,可求得点的横坐标,利用不等式的基本性质可求得点的横坐标的取值范围.【详解】设直线的方程为,联立,整理可得,因为直线过椭圆的左焦点,所以方程有两个不相等的实根设点、,设的中点为,则,,直线的垂直平分线的方程为,令,则.因为,所以故点的横坐标的取值范围.故答案为:15、【解析】解方程组可求得定点坐标.【详解】直线方程可化为,由,可得.故直线恒过定点.故答案为:.16、【解析】根据直线平行的充要条件即可求出实数的值.详解】由直线和互相平行,得,即.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)连接,可通过证明,得平面;(2)以O为坐标原点建立如图所示的空间直角坐标系,求出平面的法向量和平面的法向量,通过向量的夹角公式可得答案.【小问1详解】如图,连接,在中,由可得.因为,,所以,,因为,,,所以,所以.又因为,平面,,所以平面.【小问2详解】由(1)可知,,,两两垂直,以O为坐标原点建立如图所示的空间直角坐标系,则,,,,.由,有,则,设平面的法向量为,由,,有,取,则,,可得平面的一个法向量为.设平面的法向量为,由,,有,取,则,,可得平面的一个法向量为.由,,,可得平面与平面所成夹角的余弦值为.18、(1)(2)【解析】(1)利用导数求出切线斜率,即可求出切线方程;(2)把题意转化为:存在,使得不等式成立,构造新函数,对m进行分类讨论,利用导数求,解不等式,即可求出m的范围.【小问1详解】当时,,定义域为R,.所以,.所以曲线在点(0,f(0))处的切线方程为:,即.【小问2详解】不等式可化为:,即存在,使得不等式成立.构造函数,则.①当时,恒成立,故在上单调递增,故,解得:,故;②当时,令,解得:令,解得:故在上单调递减,在上单调递增,又,故,解得:,这与相矛盾,舍去;③当时,恒成立,故在上单调递减,故,不符合题意,应舍去.综上所述:m的取值范围为:.19、(1);(2);(3).【解析】(1)首先以为原点,、、分别为、、轴建立空间直角坐标系,利用向量求;(2)首先求平面的法向量,再利用公式求解;(3)求平面的法向量为,先求,再求二面角的正切值.【详解】(1)以为原点,、、分别为、、轴建立空间直角坐标系.则有、、、.,,所以异面直线与所成角的余弦为(2)设平面的法向量为,则知:;知取,又,点到面的距离所以点到面的距离为.(3)(2)中已求平面的法向量,设平面的法向量为∵;∴取..设二面角的平面角为,则.【点睛】本题考查空间直角坐标系求解空间角和点到平面的距离,重点考查计算能力,属于中档题型.20、(1);(2)过定点,坐标为.【解析】(1)根据椭圆的离心率公式,结合代入法进行求解即可;(2)根据直线斜率公式和一元二次方程根与系数的关系进行求解即可.【小问1详解】因为椭圆离心率为,所以有.椭圆过点,所以,由可解:,所以该椭圆方程为:;【小问2详解】由(1)可知:,设直线的方程为:,若,由椭圆的对称性可知:,不符合题意,当时,直线的方程与椭圆方程联立得:,设,,,因为,所以,把代入得:,所以有或,解得:或,当时,直线,直线恒过定点,此时与点重合,不符合题意,当时,,直线恒过点,当直线不存在斜率时,此时,,因为,所以,两点不在椭圆上,不符合题意,综上所述:过C,D两点的直线过定点,定点坐标为.【点睛】关键点睛:根据一元二次方程根与系数关系是解题的关键.21、(1)(2)证明见解析【解析】(1)先求出直线的方程,联立直线与椭圆,求出A点坐标;(2)设出直线方程,联立椭圆方程,用韦达
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 油茶租赁合同范本
- 高考全国卷思想政治考试卷题库(含答案)
- 中粮集团高级管理岗位面试问题集
- 面试题集及答案解析针对市场调研员
- 建筑行业预算员招聘问题集
- 物联网安防技术开发专家答案参考书目
- 航天科技领域考试题集及答案
- 2025年新型传媒技术研发中心可行性研究报告
- 2025年儿童早教中心建设与运营项目可行性研究报告
- 2025年新零售(O2O模式)项目可行性研究报告
- (新教材)部编人教版三年级上册语文 第25课 手术台就是阵地 教学课件
- 2026天津农商银行校园招聘考试历年真题汇编附答案解析
- 2025重庆市环卫集团有限公司招聘27人笔试历年参考题库附带答案详解
- 钻井安全操作规程
- 精密减速机行业发展现状及趋势预测报告2026-2032
- 中小学《信息技术》考试试题及答案
- 2025及未来5年挂钟机芯项目投资价值分析报告
- IPO融资分析师融资报告模板
- 搏击裁判员培训课件
- 2024年北京广播电视台招聘真题
- 危险废物安全措施课件
评论
0/150
提交评论